function DATA=MD_classification(IHD,time_series_names,MD_DATA_D,MD_DATA_DD,MD_DATA,DESCRIPTORS,des_names,R,MD_VARI) %for par_idx=1:num_params %X=[MD_DATA_D MD_DATA_DD MD_DATA]; min_numdata1=min(sum(~isnan(MD_DATA_D),2)); min_numdata2=min(sum(~isnan(MD_DATA_DD),2)); MD_DATA_D=MD_DATA_D(:,1:min_numdata1); MD_DATA_DD=MD_DATA_DD(:,1:min_numdata2); X=[MD_DATA_D MD_DATA_DD MD_DATA MD_VARI]; %X=MD_VARI; AGE_a=DESCRIPTORS(:,strcmp(des_names,'Age')); Gender_a=DESCRIPTORS(:,strcmp(des_names,'Gender')); ICUTYPE_a=[DESCRIPTORS(:,strcmp(des_names,'ICUType'))]; ICUTYPE_t=ICUTYPE_a; ICUTYPE_a(ICUTYPE_t==1)=2; ICUTYPE_a(ICUTYPE_t==2)=4; ICUTYPE_a(ICUTYPE_t==3)=1; ICUTYPE_a(ICUTYPE_t==4)=3; X=[AGE_a ICUTYPE_a MD_DATA MD_VARI MD_DATA_D MD_DATA_DD]; %0.2708 %X=[R(:,~strcmp(time_series_names,'MechVent'))]; %0.277 % X=[R(:,strcmp(time_series_names,'TroponinT'))]; % X=[R(:,strcmp(time_series_names,'TroponinI')) X]; % X=[R(:,strcmp(time_series_names,'RespRate')) X]; % X=[R(:,strcmp(time_series_names,'Mg')) X]; % X=[R(:,strcmp(time_series_names,'Lactate')) X]; % X=[R(:,strcmp(time_series_names,'K')) X]; % X=[R(:,strcmp(time_series_names,'FiO2')) X]; % X=[R(:,strcmp(time_series_names,'Bilirubin')) X]; % X=[R(:,strcmp(time_series_names,'AST')) X]; % X=[R(:,strcmp(time_series_names,'ALT')) X]; % X=[R(:,strcmp(time_series_names,'ALP')) X]; % X=[R(:,strcmp(time_series_names,'Albumin')) X]; % % % max_N=size(MD_DATA_D,2); % %X=X(:,1:max_N); % % %X_orig1=MD_DATA_D; % % scores=zeros(max_N,1); % % for idx=10:max_N % % X=[AGE_a ICUTYPE_a MD_DATA MD_VARI MD_DATA_D(:,1:idx) MD_DATA_DD(:,1:idx)]; % %[best_th0,max_score_0,D] = opt_th(X,IHD); % % % % [best_th1,max_score_1,D0] = opt_th(X(Gender_a==0,:),IHD(Gender_a==0)); % % [best_th2,max_score_2,D1] = opt_th(X(Gender_a==1,:),IHD(Gender_a==1)); % % [best_th0,max_score_0,D] = opt_th_valid(X,IHD); % % [best_th1,max_score_1,D0] = opt_th_valid(X(Gender_a==0,:),IHD(Gender_a==0)); % % [best_th2,max_score_2,D1] = opt_th_valid(X(Gender_a==1,:),IHD(Gender_a==1)); % % scores(idx,:)=[max_score_0]; % end % % figure(1) % plot(scores(:,1),'g') % % hold on % % plot(scores(:,2),'r') % % plot(scores(:,3),'b') % pause(.1) [best_th0,max_score_0,D] = opt_th(X,IHD); [best_th1,max_score_1,D0] = opt_th(X(Gender_a==0,:),IHD(Gender_a==0)); [best_th2,max_score_2,D1] = opt_th(X(Gender_a==1,:),IHD(Gender_a==1)); DATA(:,1)=0; DATA(Gender_a==0,2)=D0(:,2); DATA(Gender_a==1,2)=D1(:,2); DATA(Gender_a==0,3)=D0(:,3); DATA(Gender_a==1,3)=D1(:,3); function [best_th,max_score1,BEST_DATA]=opt_th(X_,IHD_) num_params=size(time_series_names,1); DATA=zeros(size(IHD_,1),3); B = mnrfit(X_,IHD_+1); PHAT = mnrval(B,X_); max_score1=0; max_score2=0; best_th=0; for class_th=.1:.01:0.5 DATA(:,1)=str2double('0000'); DATA(:,2)=PHAT(:,2); DATA(:,3)=PHAT(:,2)> class_th; DATA(DATA(:,2)<0.01,2)=0.01; DATA(DATA(:,2)>0.99,2)=0.99; % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA(IHD_==1,3)); FN=sum(~DATA(IHD_==1,3)); FP=sum(DATA(IHD_==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=0; % if show is 1, the decile graph will be displayed by lemeshow() H=lemeshow([IHD_ DATA(:,2)],show); % Use the title of figure to display the results title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; max_score2=H; BEST_DATA=DATA; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % end end % survivals1=sum(X==1 & IHD==0); % deaths1=sum(X==1 & IHD==1); % survivals2=sum(X==0 & IHD==0); % deaths2=sum(X==0 & IHD==1); % % disp([' non NaNs:' num2str(deaths1/(deaths1+survivals1)) ]) % disp([' NaNs:' num2str(deaths2/(deaths2+survivals2)) ]) % max_score1 end function [best_th,max_score1,BEST_DATA]=opt_th_valid(X_,IHD_) % num_params=size(time_series_names,1); n=size(X_,1); s=zeros(n,1); s(1:round(n/2))=1; s=boolean(s); B = mnrfit(X_(s,:),IHD_(s)+1); PHAT = mnrval(B,X_(~s,:)); BEST_DATA=[]; DATA_=zeros(size(PHAT,1),3); max_score1=0; max_score2=0; best_th=0; for class_th=.1:.01:0.5 DATA_(:,1)=str2double('0000'); DATA_(:,2)=PHAT(:,2); DATA_(:,3)=PHAT(:,2)> class_th; DATA_(DATA_(:,2)<0.01,2)=0.01; DATA_(DATA_(:,2)>0.99,2)=0.99; % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA_(IHD_(~s)==1,3)); FN=sum(~DATA_(IHD_(~s)==1,3)); FP=sum(DATA_(IHD_(~s)==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); % show=0; % if show is 1, the decile graph will be displayed by lemeshow() % H=lemeshow([IHD_ DATA_(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; % max_score2=H; BEST_DATA=DATA_; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % end end % survivals1=sum(X==1 & IHD==0); % deaths1=sum(X==1 & IHD==1); % survivals2=sum(X==0 & IHD==0); % deaths2=sum(X==0 & IHD==1); % % disp([' non NaNs:' num2str(deaths1/(deaths1+survivals1)) ]) % disp([' NaNs:' num2str(deaths2/(deaths2+survivals2)) ]) % % % max_score1 end end