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Abstract

The goal of the 2016 PhysioNet/CinC Challenge is the
development of an algorithm to classify normal/abnormal
heart sounds. A total of 124 time-frequency features were
extracted from the phonocardiogram (PCG) and input to a
variant of the AdaBoost classifier. A second classifier us-
ing convolutional neural network (CNN) was trained us-
ing PCGs cardiac cycles decomposed into four frequency
bands. The final decision rule to classify normal/abnor-
mal heart sounds was based on an ensemble of classifiers
combining the outputs of AdaBoost and the CNN. The al-
gorithm was trained on a training dataset (normal= 2575,
abnormal= 665) and evaluated on a blind test dataset. Our
classifier ensemble approach obtained the highest score of
the competition with a sensitivity, specificity, and overall
score of 0.9424, 0.7781, and 0.8602, respectively.

1. Introduction

Heart auscultation is the primary tool for screening and
diagnosis in primary health care [1]. Availability of digi-
tal stethoscopes and mobile devices provides clinicians an
opportunity to record and analyze heart sounds (PCG) for
diagnostic purposes. The goal of the 2016 PhysioNet/CinC
Challenge is the development of algorithms to classify nor-
mal/abnormal heart sound recordings [2]. We proposed an
ensemble of a feature-based classifier and a deep learning-
based classifier to boost the classification performance of
heart sounds.

2. Method and Material

A block diagram of the proposed approach to classify
normal/abnormal PCG is shown in Fig. 1.

2.1. Challenge Database

The challenge database provided PCG recordings of
healthy subjects and pathological patients collected at ei-
ther a clinical or non-clinical environment. Details about

the challenge dataset can be found in [2]. For algorithm de-
velopment, in-house training and test sets were generated
by randomly taking 80% and 20% of the records from each
database, while keeping the same prevalence of abnormal
classes. In-house training set was used for training and
cross-validation of different models, and in-house test set
was used for evaluation of the classification performance
independently from the blind test dataset.

2.2. Pre-processing

Each PCG was resampled to 1000 Hz, band-pass fil-
tered between 25 Hz and 400 Hz, and then pre-processed
to remove any spikes in the PCG [3]. Furthermore, pre-
processed PCGs were segmented into four heart sound
states using a segmentation method proposed by Springer
et al. [4]. Each PCG is comprised of more than one car-
diac cycle (beat), and each beat is comprised of four heart
sound states (i.e. S1, systole, S2, and diastole).

2.3. Feature-based Approach

In this approach, a variant of AdaBoost classifier [5] was
trained for classification of normal/abnormal PCGs using
time and frequency-domain features.

2.3.1. Time-domain Features

Mean and standard deviation (SD) of the following pa-
rameters were used as time-domain features (36 features):
1. PCG intervals: RR intervals, S1 intervals, S2 intervals,
systolic intervals, diastolic intervals, ratio of systolic in-
terval to RR interval of each heart beat, ratio of diastolic
interval to RR interval of each heart beat, ratio of systolic
to diastolic interval of each heart beat.
2. PCG amplitudes: ratio of the mean absolute amplitude
during systole to that during the S1 period in each heart
beat, ratio of the mean absolute amplitude during diastole
to that during the S2 period in each heart beat, skewness of
the amplitude during S1 period in each heart beat, skew-
ness of the amplitude during S2 period in each heart beat,
skewness of the amplitude during systole period in each



heart beat, skewness of the amplitude during diastole pe-
riod in each heart beat, kurtosis of the amplitude during
S1 period in each heart beat, kurtosis of the amplitude dur-
ing S2 period in each heart beat, kurtosis of the amplitude
during systole period in each heart beat, kurtosis of the am-
plitude during diastole period in each heart beat

2.3.2. Frequency-domain Features

The power spectrum of each heart sound state (i.e. S1,
systole, S2, and diastole) was estimated using a Hamming
window and the discrete-time Fourier transform. The me-
dian power across nine frequency bands (i.e. 25-45, 45-
65, 65-85, 85-105, 105-125, 125-150, 150-200, 200-300,
300-400 Hz) corresponding to the S1, S2, systole, and di-
astole states of each cardiac cycle was calculated. Then,
the mean of the median power of the nine frequency bands
for all cycles were used as frequency-domain features (i.e.
9 frequency bands × 4 states = 36 features). Additionally,
13 mel-frequency cepstral coefficient (MFCC) [6] were ex-
tracted from each state and each cardiac cycle. The mean
of MFCCs across different cardiac cycles from the same
heart sound recording was used as MFCC features (i.e. 13
MFCCs × 4 states = 52 features).

2.3.3. AdaBoost-abstain Classifier

AdaBoost is an effective machine learning technique for
building a powerful classifier from an ensemble of “weak
learners”. Specifically, the boosted classifierH(x) is mod-
eled as a generalized additive model of many base hy-
potheses:

H(x) = b+
∑
t

αth(x;θt) (1)

where b is a constant bias that accounts for the prevalence
of the categories, and each base classifier h(x;θt) is a
function of x, with parameters given by the elements in the
vector θt, and produces a classification output (+1 or −1).
In our approach, each base classifier is a simple decision
stump over one of the above features. We also allow each
of the base classifiers to abstain from voting (output=0)
using a modified version of AdaBoost, AdaBoost–abstain
[5]. A final classification decision is assigned by taking the
sign of H(x), which results in a weighted majority vote
over the base classifiers in the model.

2.4. Convolutional Neural Network-based
Approach

Each PCG recording was decomposed into four fre-
quency bands (i.e. 25-45, 45-80, 80-200, and 200-400 Hz)

and segmented to different cardiac cycles using PCG seg-
mentation. The decomposed cardiac cycle with S1, sys-
tole, S2, and diastole was the input to the CNN network
shown in Fig.2. Each cardiac cycle had a 2.5 seconds
duration corresponding to the longest cardiac cycle found
across all PCG recordings. If a cardiac cycle had a shorter
duration, then the time series was zero padded.

As shown in Fig. 2, four time series, one per each fre-
quency band, are the inputs to the network. Each of the
CNNs consist of three layers: the input layer followed by 2
convolution layers. The input layer corresponds to the car-
diac cycle of a specific frequency band (i.e. length = 2500
samples). Each convolutional layer involves a convolution
operation, a nonlinear transformation, and a maxpooling
operation. The first convolutional layer has 8 filters of
length 5, followed by ReLu, and a max-pooling of 2. The
second convolutional layer has 4 filters of length 5, fol-
lowed by ReLu, and a max-pooling of 2. The output of the
4-CNNs are flattened and input to a multilayer perceptron
(MLP) network. The MLP network consists of the input
layer (i.e. flattened output of the 4-CNNs), a hidden layer
with 20 neurons, and the output layer (i.e. one node). The
activation function in the hidden layer is a ReLu and the ac-
tivation function in the output layer is a sigmoid. The out-
put layer computes the class score (i.e. probability value,
CNN ABN) of abnormal heart sound. Dropout of 25%
was applied after max-pooling of the second convolutional
layer. Dropout of 50% and L2 regularization was applied
at the hidden layer of the MLP network. Adam was used
for stochastic optimization, and cross-entropy was chosen
as the loss function to minimize.

2.5. Final Decision Rule

The output of the two classifiers, AdaBoost-abstain (Ad-
aBoost ABN) and CNN (CNN ABN), were combined us-
ing a decision rule shown below (Algorithm 1) to produce
the final classification result (normal/abnormal). The cor-
responding thresholds (thr ABN and thr CNN) were tuned
to maximize the overall challenge score on the in-house
training set [2].

Algorithm 1 Decision Rule
if (AdaBoost ABN > thr ABN)OR(CNN ABN >
thr CNN) then
Abnormal PCG
else
Normal PCG
end if
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Figure 1. Block diagram of the proposed approach for classification of normal/abnormal heart sounds.
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Figure 2. CNN architecture for classification of normal/abnormal heart sounds.



Table 1. Classification results on in-house test set and on
a random subset of the blind test set (between parenthesis)
when using AdaBoost-abstain, CNN, and their combina-
tion.

Classifier Sensitivity Specificity Overall Score
AdaBoost-abstain 0.70 (0.88) 0.88 (0.82) 0.79 (0.85)

CNN 0.79 (0.88) 0.86 (0.80) 0.82 (0.84)
Classifier ensemble 0.88 (0.96) 0.82 (0.80) 0.85 (0.89)

3. Results

3.1. Classification Result using Feature-
based Approach

One hundred twenty four features were fed into the
AdaBoost-abstain classifier to classify normal/abnormal
heart sounds; only 59 features were selected by the clas-
sifier after tuning parameters (e.g. number of iterations).
Among the selected features, the top ten were the MFCC
associated with S1, S2, and diastole states, SD of the kur-
tosis of the amplitudes during S1, and the mean and SD
values of S1 and S2 intervals. AdaBoost–abstain provides
an area under the receiver operating characteristic (AUC)
of 0.91 on the in-house test set.

3.2. Classification Result using CNN-based
Approach

Hyperparameters of the CNN network were tuned using
the in-house training set, resulting in the following config-
uration: batch size of 1024, learning rate of 0.0007, and
200 epochs. Early stoppage was applied when the loss
function stop decreasing. The CNN classifier provides a
AUC equal to 0.92 on the in-house test set for classifica-
tion of normal/abnormal heart sound.

3.3. Classification Result using Classifier
Ensemble

The best results achieved at the official phase of the
challenge using the complete blind test dataset was overall
challenge score of 0.8602 (sensitivity and specificity equal
to 0.9424 and 0.7781, respectively). The high sensitivity
of our proposed algorithm is especially important for re-
ferring subjects for further screening. After the data chal-
lenge competition, the entry that led to the best classifica-
tion results was downloaded and run on the in-house test
set. The results achieved on the in-house test set using the
AdaBoost-abstain, the CNN, and classifier ensemble are
shown in Table 1. These results show that an ensembling
of AdaBoost and CNN classifiers significantly increases
the sensitivity (by 18% compared to AdaBoost alone, and
9% compared to CNN alone) but decreases the specificity

(by 6% compared to AdaBoost alone and 4% compared to
CNN alone). This conclusion is further confirmed with the
results achieved from different entries at the official phase
of the challenge (i.e. on a random subset of the blind test
set) when using AdaBoost-abstain, CNN, classifier ensem-
ble (see results between parenthesis in Table 1).

4. Conclusion

In this article, a novel approach for distinguishing nor-
mal/abnormal heart sounds is proposed that combines
a classifier trained with time-frequency features and a
deep-learning (CNN) classifier. Our results demonstrate
the power of ensembling feature-based and representation
learning classifiers for heart sound analysis.
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