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Abstract

Predicting preterm birth is uncertain, and numerous scientists are searching for non-

invasive methods to improve its predictability. Current researches are based on the analysis

of ElectroHysteroGram (EHG) records, which contain information about the electrophysio-

logical properties of the uterine muscle and uterine contractions. Since pregnancy is a long

process, we decided to also characterize, for the first time, non-contraction intervals

(dummy intervals) of the uterine records, i.e., EHG signals accompanied by a simulta-

neously recorded external tocogram measuring mechanical uterine activity (TOCO signal).

For this purpose, we developed a new set of uterine records, TPEHGT DS, containing pre-

term and term uterine records of pregnant women, and uterine records of non-pregnant

women. We quantitatively characterized contraction intervals (contractions) and dummy

intervals of the uterine records of the TPEHGT DS in terms of the normalized power spectra

of the EHG and TOCO signals, and developed a new method for predicting preterm birth.

The results on the characterization revealed that the peak amplitudes of the normalized

power spectra of the EHG and TOCO signals of the contraction and dummy intervals in the

frequency band 1.0-2.2 Hz, describing the electrical and mechanical activity of the uterus

due to the maternal heart (maternal heart rate), are high only during term pregnancies,

when the delivery is still far away; and they are low when the delivery is close. However,

these peak amplitudes are also low during preterm pregnancies, when the delivery is still

supposed to be far away (thus suggesting the danger of preterm birth); and they are also

low or barely present for non-pregnant women. We propose the values of the peak ampli-

tudes of the normalized power spectra due to the influence of the maternal heart, in an elec-

tro-mechanical sense, in the frequency band 1.0-2.2 Hz as a new biophysical marker for the

preliminary, or early, assessment of the danger of preterm birth. The classification of pre-

term and term, contraction and dummy intervals of the TPEHGT DS, for the task of the auto-

matic prediction of preterm birth, using sample entropy, the median frequency of the power

spectra, and the peak amplitude of the normalized power spectra, revealed that the dummy

intervals provide quite comparable and slightly higher classification performances than

these features obtained from the contraction intervals. This result suggests a novel and sim-

ple clinical technique, not necessarily to seek contraction intervals but using the dummy

intervals, for the early assessment of the danger of preterm birth. Using the publicly
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available TPEHG DB database to predict preterm birth in terms of classifying between pre-

term and term EHG records, the proposed method outperformed all currently existing meth-

ods. The achieved classification accuracy was 100% for early records, recorded around the

23rd week of pregnancy; and 96.33%, the area under the curve of 99.44%, for all records of

the database. Since the proposed method is capable of using the dummy intervals with high

classification accuracy, it is also suitable for clinical use very early during pregnancy, around

the 23rd week of pregnancy, when contractions may or may not be present.

Introduction

Preterm birth, also referred to as premature birth or premature delivery, is defined by the

World Health Organization (WHO) as the live delivery of babies which occur before 37 weeks

of gestation [1]. Term births are the live delivery occurring at 37-42 weeks. According to

WHO, the prevalence of preterm birth is 1 in 10 babies, or 15 million babies every year. This

presents a serious problem since preterm delivery is the leading cause of morbidity of babies,

and accounts for approximately 50% of all perinatal deaths [2]. Up to 40% of survivors of pre-

term delivery may develop numerous health defects as well as long-term disabilities in the neu-

rological sense. An early prediction of an impending preterm labor could improve general

newborn health. Appropriate medical intervention can be taken early to postpone the labor as

long as possible.

Besides medically indicated or induced preterm births [2], and Preterm Premature Rupture

of Membranes (PPROM) [2], evidence suggests that different pathological processes that

might be involved in initiating preterm labor, such as uterine ischemia, burst blood vessels,

intrauterine infection or inflammation, uterine over-distention [2], and numerous of other

risk factors, such as diabetes, conization, hypertension, uterine abnormalities, smoking, alco-

hol and drug use, and life style, have also been identified [3].

Predicting preterm birth based on these factors alone is far from certain. Other techniques

are needed for better prediction. One such promising technique is the analysis of an electro-

myogram (EMG) of the uterus recorded from the abdominal wall of a pregnant woman, i.e.

ElectroHysteroGram (EHG), which allows the non-invasive quantitative assessment of

mechanical uterine contractions present during pregnancy, which are the result of discontinu-

ous bursts of action potentials due to spontaneous electrical discharges from the uterine mus-

cle [4–9].

Applying different prediction methods showed that EHG records seem to provide adequate

data to predict preterm labor [7], and can diagnose labor more accurately than other tradi-

tional clinical methods [5] [7, 10–12].

Measuring mechanical uterine pressure using an external tocodynamometer (external toco-

graphy) is another way of monitoring mechanical uterine contractions during pregnancy. Ini-

tially, it was thought that tocography, monitoring mechanical uterine contractions, would be a

promising approach for predicting the risk of preterm birth, however later studies on monitor-

ing, and quantitative analysis of uterine activity [10, 13], have not confirmed this. However,

tocography signals were successfully used for detection [14] and classification [15] of uterine

contractions.

The task of predicting preterm birth on the basis of EHG uterine records is usually per-

formed by two approaches: to distinguish between pregnancy and labor, either in preterm or

term cases, or, to distinguish between preterm and term delivery. Both approaches may be
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divided into two categories: approaches dealing with individual contraction bursts corre-

sponding to uterine contractions, and approaches dealing with the entire EHG records or sig-

nals. The uterus is composed of billions of intricately interconnected cells whose responses are

non-linear, therefore it is regarded as a complex, non-linear dynamic system. A variety of lin-

ear and non-linear signal processing techniques have been used for predicting preterm birth.

The selected parameters (or features) for classification were time domain parameters, parame-

ters based on signal power spectrum, entropy parameters, parameters estimating non-linearity,

and EHG propagation parameters.

Approaches to classifying individual pregnancy and labor contraction bursts incorporated

the following features: Root Mean Square (RMS) value [6, 16]; amplitude and area under con-

traction curve [16]; contraction power [16]; peak frequency of power spectrum [10, 17–19];

mean frequency, peak frequency, and median frequency of power spectrum [16, 19–21]; mean

power frequency [22]; EHG propagation velocity [10, 17]; wavelets [11] [20, 23, 24]; autore-

gressive (AR) coefficients [23]; time reversibility [20–22]; sample entropy and Lyapunov expo-

nent [19–21]; variance entropy [20]; delay vector variance [21]; approximate entropy [22];

non-linear correlation coefficient [25]; and intrinsic mode functions using Empirical Mode

Decomposition (EMD) [26].

The appearance of the Term-Preterm EHG Database (TPEHG DB) [27, 28] resulted in a

number of signal processing approaches dealing with entire EHG records or signals and non-

linear features. These include: RMS, peak frequency and median frequency of power spectrum,

and sample entropy [27, 29–33]; autocorrelation zero crossing, maximal Lyapunov exponent,

and correlation dimension [27]; entropy of intrinsic mode functions using EMD [34]; fractal

dimension, fuzzy entropy, interquartile range, mean absolute deviation, mean energy, mean

Teager-Kaiser energy, sample entropy, and standard deviation after EMD combined with

wavelet packet decomposition [35]; and Multivariate Multiscale Fuzzy Entropy (MMFE) [36].

For successful classification, standard classifiers, e.g., k nearest neighbour [36], support vector

machine [35], quadratic discriminant analysis [33], as well as advanced classifiers, such as vari-

ety of neural networks [32], random forests [31], and AdaBoost [34], were used.

Despite extensive research and some excellent achievements, the task of predicting preterm

birth is still not as sufficiently solved as we would like. It is not quite clear what would be the

“best” frequency content of EHG signals to extract features for classification, nor what would

be the “best” features in order to achieve as high a classification accuracy as possible. These

two questions are closely related.

Many methods to assess the danger of preterm birth use the frequency band 0.34-1.0 Hz of

EHG signals [10, 17, 18, 29, 31, 32]. This is done to avoid maternal respiration in the frequency

band 0.2-0.34 Hz (assuming a respiratory rate from 12 to 20.4 breaths per min), and to avoid

the influence of maternal electrocardiogram (ECG) in terms of maternal heart rate, a strong

component, above 1.0 Hz (assuming a maternal heart rate of 60 beats per min [bpm] and

higher) together with high frequency harmonics [37]. On the other hand, there is evidence

that useful information regarding electrical activity of uterine bursts lies in the frequency band

0.1-4.7 Hz divided into two frequency bands: 0.1-1.2 Hz, Fast Wave Low (FWL), and 1.2-4.7

Hz, Fast Wave High (FWH) [11, 38]. The FWL is assumed to be related to the propagation of

the electrical activity along the uterus, while the FWH is assumed to be related to the excitabil-

ity of the uterus [11, 12, 38, 39]. The shift of the spectrum of uterine bursts towards higher fre-

quencies as labor approaches was reported [4, 11, 12]. Therefore, many other methods used a

wider frequency band expanding above 1.0 Hz, 0.3-3.0 Hz [27, 30, 34–36], 0.1-3.0 Hz [20, 24,

26], 0.3-4.0 Hz [27, 33], 0.2-8.0 Hz [23], 0.05-16.0 Hz [11].

To address the problem of the non-stationarity of the EHG signals, and using the frequency

band expanding above 1.0 Hz, several multifrequency band decomposition approaches were
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employed. The wavelet packet transform multiresolution signal decomposition technique,

splitting the frequency region 0.0-3.125 Hz of the input signals into eight packets of equal

bandwidths, was used to investigate the way the energy distribution of the uterine EHG signal

is modified during pregnancy and in labor [40], and to improve the classification accuracy of

complex uterine EHG signals [24]. The EMD method decomposing the EHG signals into a

number of intrinsic mode functions which were sequentially ranked from the high to the low

frequency components of the frequency region 0.3-3.0 Hz [34], or in combination with the

wavelet packet decomposition technique [35], was used to improve the classification accuracy

of preterm and term records of the TPEHG DB.

In order to select the relevant features to classify pregnancy and labor contractions, the Jef-

frey divergence distance, sequential forward selection method, and Binary Particle Swarm

Optimization (BPSO) technique, using standard classifiers (k nearest neighbour, linear dis-

criminant analysis, and quadratic discriminant analysis) were investigated and compared [20].

The identified common features relevant for the classification of contractions were: the wavelet

related features and variance entropy. Using the BPSO technique and support vector machine

classifier, the proposed features for classification of entire preterm and term EHG records

were fractal dimension, fuzzy entropy, interquartile range, mean absolute deviation, mean

energy, mean Teager-Kaiser energy, sample entropy, and standard deviation [35].

Pregnancy is a long process, and all the underlying physiological mechanisms of the uterus

present during pregnancy, and their evolution, are still poorly understood. We believe that the

indications of excitability of the uterus are not restrained to efficient contractile events, which

represent only a small fraction of total duration of pregnancy, but important physiological

mechanisms may also be present outside of the contraction intervals, and at higher frequen-

cies. None of the studies using the EHG signals were dedicated to non-contraction intervals,

nor separately investigated the frequency band above 1.0 Hz, where permanent maternal heart

activity (maternal heart rate with higher harmonics) in the electrical sense is expected. The

ECG activity is of strong potential, about 1 mV, while the potential of EHG bursts is about

50 μV; the ratio is about 20. The influence of the maternal ECG [5], as well as the influence of

the maternal heart rate with higher harmonics [37], on the uterine EHG activity are known.

Besides, none of the studies were dedicated to frequency analysis of the external tocogram

(TOCO signal) in the frequency band above 1.0 Hz where permanent maternal heart activity

(maternal heart rate) in the mechanical sense, i.e., mechanical “vibrating” of the uterus due to

the heart beating, is expected. To better understand the behavior of uterine physiological pro-

cesses, we also decided to “listen” to the uterus, for the first time during non-contraction inter-

vals, through the entire spectrum of the EHG and TOCO signals, up to 5.0 Hz, and to pay

special attention to the frequency band above 1.0 Hz, which carries information of the electri-

cal and mechanical activity of the uterus due to the maternal heart. Inclusion and frequency

analysis of the TOCO signal, the characteristics of the power spectra of EHG and TOCO sig-

nals above 1.0 Hz, and signal features, help to better understand and describe the physiological

mechanisms involved during pregnancy.

The aims of this study were:

1. to develop a new set of uterine records (EHG signals accompanied by a simultaneously

recorded TOCO signal) of pregnant women (preterm, term) and of non-pregnant women;

2. to characterize the uterine records of the new set in terms of normalized power spectra and

spectrograms;

3. to test the hypothesis that the frequency region of the EHG and TOCO signals above 1.0 Hz

containing the frequency components due to the influence of the maternal heart (maternal
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heart rate with higher harmonics) provides important features for the efficient prediction of

preterm birth;

4. to test another hypothesis that the non-contraction intervals of uterine records are equally,

or even more, important for the accurate prediction of preterm birth than the contraction

intervals;

5. to develop a new and improved method for the automatic prediction of preterm birth;

6. to evaluate the classification performance of the new method using the newly developed set,

and using the publicly available TPEHG DB.

First, we quantitatively characterized, in addition to the power spectra of uterine contrac-

tion intervals, the power spectra of non-contraction intervals, using the EHG and TOCO sig-

nals of pregnant and non-pregnant women of the newly developed set of uterine records. We

showed that the influence of the maternal heart on the uterus in the electro-mechanical sense

is measurable via frequency domain analysis of the EHG, and TOCO, signals in the frequency

region above 1.0 Hz. We found that the variability of the normalized peak amplitude of the

power spectra of the EHG and TOCO signals in the frequency band 1.0-2.2 Hz, reflecting the

electro-mechanical influence of the maternal heart activity, is very important for predicting

preterm birth, and propose it as a new biophysical marker. Using the newly developed set, we

showed that the features (sample entropies, median frequencies of power spectra, and peak

amplitudes of the normalized power spectra) obtained from non-contraction intervals provide

quite comparable and slightly higher classification accuracy in classifying preterm and term

deliveries than these features obtained from contraction intervals. In addition, we verified the

extent of the influence of the maternal heart on a pregnant uterus in the electro-mechanical

sense via classification accuracies obtained for the records of non-pregnant women versus the

records of pregnant women. Finally, the classification performance of the proposed method to

classify preterm and term deliveries on the basis of the entire EHG records of the TPEHG DB

was evaluated.

The study’s design was approved by the National Medical Ethics Committee of the Republic

Slovenia (No. 32/01/97, No. 108/09/09).

Materials and methods

With the aim to develop a useful and improved automatic method for predicting preterm

birth, we followed a general and widely accepted development process [29–36]:

1. select or construct a valid batabase for training and testing the model;

2. characterize the data and use effective mathematical expressions to formulate the features

that reflect their correlation with the target classes;

3. develop or introduce an algorithm or method to operate the analysis;

4. evaluate the performance of the classification using cross-validation tests for the objective

prediction of real-world performance.

Term-Preterm ElectroHysterogram databases

Term-Preterm ElectroHysteroGram dataSet with tocogram. The newly developed

Term-Preterm ElectroHysteroGram DataSet with Tocogram (TPEHGT DS) contains 26

three-signal 30-min uterine EHG records with the fourth signal of a simultaneously recorded

external TOCO signal of pregnant women, and another five 30-min uterine records (EHG and
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TOCO signals) of non-pregnant women. The records were collected at the University Medical

Centre Ljubljana, Department of Obstetrics and Gynecology. (All women gave their written,

informed consent). The recording equipment and the recording protocol (including position

of the electrodes) were those which were also used during collecting the records of the TPEHG

DB [27]. The records of the pregnant women belong to pregnancies that resulted in spontane-

ous preterm delivery (13 preterm records from eight pregnancies), and to pregnancies that

resulted in spontaneous term delivery (13 term records from ten pregnancies). The mean

recording time and standard deviation of the records of pregnant women was 30.2 (± 2.76)

weeks of pregnancy. The mean delivery times of preterm and term records, were 33.7 (± 1.97)

weeks and 38.1 (± 1.04), respectively. Fig 1 shows the position of electrodes to measure EHG

signals. The EHG signals of the records were collected from the abdominal surface using four

AgCl2 electrodes. The first acquired EHG signal (S1) was measured between the topmost elec-

trodes (E2-E1), the second (S2) between the leftmost electrodes (E2-E3), and the third (S3)

between the lower electrodes (E4-E3). The reference electrode was attached to the woman’s

thigh. The fourth simultaneous signal was the external mechanical uterine pressure. It was

acquired using a cardiotocograph (model HP8030) of which sensor measuring the mechanical

uterine pressure was attached at the top of the fundus. This signal is also known as an external

tocogram or TOCO signal. The analog TOCO signal was lead to one of the amplifiers of the A/

D converter (the value of 150 μV corresponds to a pressure of 1 Pa). Prior to sampling, the

EHG signals and TOCO signal were filtered using an analog three-pole Butterworth filter with

the bandwidth 0.0-5.0 Hz. The sampling frequency, fS, for the EHG and TOCO signals was 20

samples per second per signal.

There are 47 annotated intervals related to uterine contractions (contraction intervals) and

47 annotated non-contraction intervals (we named them dummy intervals) in the preterm rec-

ords of the TPEHGT DS, another 53 annotated contraction and 53 dummy intervals in term
records, and another 53 annotated dummy intervals in the records of non-pregnant women

(non-pregnant dummy intervals). For the manual annotating procedure, we used our own

graphic user interface and annotation editor. Besides visualizing original signals and annota-

tion editing, the graphic user interface also allows calculating and visualizing spectrograms of

the signals. Consensus about the annotated intervals was reached by two annotators. Fig 2

shows annotations, original signals, and spectrograms of original signals, of a preterm record

of the TPEHGT DS after the procedure of manual annotating. The beginnings and ends of

contraction intervals were set according to onsets and offsets of the deflections visible in the

TOCO signal, which had to be accompanied by simultaneous severe bursts in the EHG signals.

Ambiguous cases and cases contaminated with motion artefacts were not annotated. After

that, in each record the same number of dummy intervals as the number of already annotated

contraction intervals were annotated. The beginnings and ends of dummy intervals were set in

the signal intervals with no visible deflection in the TOCO signal, and with no simultaneous

activity in the EHG signals, between, or next/prior to, contraction intervals, again avoiding

motion artefacts. The lengths of dummy intervals were decided to be approximately of the

same lengths as were the lengths of already annotated neighbouring contraction intervals, thus

providing as much as possible comparable frequency resolution during Fourier decomposi-

tion. The lengths of non-pregnant dummy intervals in the records of non-pregnant women

were decided again to be approximately of the same lengths as were the lengths obtained for

annotated contraction intervals. Fig 3 shows annotations, original signals, and spectrograms of

original signals, of a record of non-pregnant woman of the TPEHGT DS. The average lengths

and standard deviations of preterm and term contraction intervals were 82 (± 48) sec and 88 (±
36) sec, of preterm and term dummy intervals were 83 (± 46) sec and 89 (± 46) sec, while of

non-pregnant dummy intervals were 92 (± 37) sec.
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Term-Preterm EHG Database. The Term-Preterm EHG Database (TPEHG DB) [27],

which is also publicly available on Physionet web site (https://physionet.org/physiobank/

database/tpehgdb/) [28], contains 162 three-signal EHG records recorded around the 23rd

week of gestation (early records), of which 19 ended in preterm delivery and 143 in term deliv-

ery, and another 138 EHG records recorded around the 31st week of gestation (later records),

of which 19 ended in preterm delivery and 119 in term delivery. In total, there are 300 EHG

records (all records), of which 38 ended in preterm delivery and 262 in term delivery. The

Fig 1. Position of electrodes. The electrodes were placed in two horizontal rows, symmetrically above and under the navel, spaced 7 cm apart.

https://doi.org/10.1371/journal.pone.0202125.g001
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records of the TPEHG DB do not contain the TOCO signal. The EHG signals S1, S2, and S3

were measured according to the positions of the electrodes as shown in Fig 1.

Feature extraction technique and features

The EHG signals are non-stationary and time-varying. They carry important information

about the non-linear processes of the underlying physiological mechanisms of the uterus pres-

ent during pregnancy. In general, physiological mechanisms likely reside in different locally

stationary frequency bands and with different intensities, whereas the corresponding fre-

quency content and the intensities of the mechanisms in the bands vary as the pregnancy pro-

gresses. Activity connected to contractions in the EHG and TOCO signals of uterine records is

expected below 1.0 Hz, while above 1.0 Hz separate and strong activity connected to another

mechanism, the frequency component of the maternal ECG (heart rate) together with higher

frequency harmonics, is expected. Therefore, the approach for the characterization and classi-

fication of contraction and dummy intervals of uterine records (composed from the EHG and

Fig 2. Manual annotations of three contraction and three dummy intervals in the record tpehgt_p008 (preterm, recorded in the 26th week,

delivery in the 32nd week) of the TPEHGT DS. From top to bottom: EHG signal S2, spectrogram (0.0-5.0 Hz) of EHG signal S2, spectrogram

(0.0-5.0 Hz) of TOCO signal, and TOCO signal. Red: contraction intervals, blue: dummy intervals.

https://doi.org/10.1371/journal.pone.0202125.g002
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TOCO signals), and of entire EHG records, is based on four strictly separated frequency

bands:

• Band B0: flow = 0.08 Hz, fhigh = 1.0 Hz;

• Band B1: flow = 1.0 Hz, fhigh = 2.2 Hz;

• Band B2: flow = 2.2 Hz, fhigh = 3.5 Hz;

• Band B3: flow = 3.5 Hz, fhigh = 5.0 Hz.

The chosen frequency bands to analyze the EHG and TOCO signals allow: 1) characteriza-

tion of the influence of the maternal heart in terms of heart frequency (B1), and its second

(B2) and third (B3) harmonic, to electrical (EHG) and mechanical (TOCO) activity of the

uterus separately from the influence of contractions (B0); 2) testing of the classification perfor-

mance to predict preterm birth when the features are related to strictly separated frequency

bands that correspond to different physiological mechanisms. The selected features for charac-

terization, and classification of contraction or dummy intervals, or entire records, the median

Fig 3. Manual annotations of non-pregnant dummy intervals in the record tpehgt_n002 (non-pregnant) of the TPEHGT DS. From top to

bottom: EHG signal S2, spectrogram (0.0-0.5 Hz) of EHG signal S2, spectrogram (0.0-0.5 Hz) of TOCO signal, and TOCO signal. Blue: dummy
intervals.

https://doi.org/10.1371/journal.pone.0202125.g003
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frequency of the power spectrum, and the peak amplitude of the normalized power spectrum.

These features have the capability to directly estimate the presence and extent of the underly-

ing physiological mechanisms in separate frequency bands.

Sample entropy. Sample entropy, SE, estimates the regularity or predictability of signals

[41, 42]. Less regular or less predictable signals exhibit a higher sample entropy. Let y(n)

denote the input time series of length N and let bl[0,. . .,m − 1] denote patterns of length m,

m< N, where patterns bl are taken from the time series y(n), bl(i) = y(l + i), 0� i�m − 1, 0�

l� N −m. The part of the time series y(n) at index n = ns, y[ns,. . .,ns + m − 1], is considered a

match for a given pattern bl, ns 6¼ l, ifmax {|y(ns + i) − bl(i)|: 0� i�m − 1}� r. The number

of pattern matches, cm, is constructed for each m. The sample entropy, SEm, r(y), is then calcu-

lated following:

SEm;rðyÞ ¼
� logðcm=cðm� 1ÞÞ; cm 6¼ 0 ^ cm� 1 6¼ 0

� logððN � mÞ=ðN � m � 1ÞÞ; cm ¼ 0 _ cm� 1 ¼ 0 :

(

ð1Þ

The following values of parameters were used, m = 3 and r = 0.15. These two values were

adopted from the previous study assessing the separability between preterm and term EHG rec-

ords of the TPEHG DB [27].

Median frequency of power spectrum. The median frequency, MF, of the power spec-

trum, P(k), in the selected frequency band between the low, flow, and high, fhigh, frequencies of

interest was defined following:

MF ¼ kj
fS
M
;
Xk¼kj

k¼klow

PðkÞ �
Xk¼khigh

k¼kjþ1

PðkÞ ; ð2Þ

where klow ¼ flow
M
fS

and khigh ¼ fhigh
M
fS

are the indexes of the power spectrum components at the

low, flow, and high, fhigh, frequencies, fS is the sampling frequency, and M denotes the number

of components of the power spectrum P(k).

Peak amplitude of normalized power spectrum. The peak amplitude of the normalized

power spectrum, PA, in the selected frequency band between the low, flow, and high, fhigh, fre-

quencies of interest was defined following:

PA ¼ max k¼khigh
k¼klow

PðkÞ
Pmax

� �

; ð3Þ

where klow ¼ flow
M
fS

and khigh ¼ fhigh
M
fS

are the indexes of the power spectrum components at the

low, flow, and high, fhigh, frequencies, and Pmax is the maximum component of the power spec-

trum in the frequency interval from 0 to
fS
2
.

The power spectra of signals of contraction or dummy intervals, or of entire signals of rec-

ords, were calculated using the Fourier transform preceded by Hanning weighted windowing to

attenuate spectral leakage. In order to reduce the fluctuations (small amplitude frequency

spikes) in the power spectra, smoothing of the power spectra was performed using moving aver-

age over the frequency interval of 0.1 Hz, i.e., 1.0% of the interval from 0.0 Hz to
fS
2

= 10.0 Hz.

Normalization of the power spectrum with respect to the spectral peak in the entire spectrum

allows the estimating of relative proportions of the PA in the selected frequency bands. For

example, normalization allows the assessment of the intensity, PA, of the influence of the mater-

nal heart in the frequency band B1 in comparison to the PA in other frequency bands, e.g., B0

where the influence of maternal respiration and contractions is expected. Moreover, higher and

frequent uterine activity in signals of term records results in slightly higher EHG signal
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amplitude in an absolute sense than in signals of preterm records [5]. Normalization provides

comparable estimates of relative proportions of peak amplitudes in separate frequency bands

for both types of records. In addition, normalization of the power spectra of the EHG and

TOCO signals allows comparison of relative proportions of peak amplitudes in separate fre-

quency bands for both types of signals. The flow of the frequency band B0 was intentionaly set to

0.08 Hz thus retaining the respiration component (0.2-0.34 Hz) in the power spectra of the

EHG and TOCO signals of dummy intervals and non-pregnant dummy intervals, and preserve-

ing at least one high spectral peak for normalization purposes.

The SE has been successfully applied for analysis of many biological signals such as ECG,

blood pressure, electroencephalogram, and electromyogram [43]. The SE has the ability to esti-

mate the level of regularity or predictability of time series. A low value of the SE suggests the

presence of a physiologic mechanism with periodic behavior, while a high value suggests the

absence of a mechanism. The SE and MF have been successfully used to classify individual

pregnancy and labor contractions [19–21, 44], and to classify entire preterm and term EHG

records [27, 29–33], which are actually sequences of contraction and non-contraction

(dummy) intervals. The MF and PA are suitable features for assessing shifts and intensity of the

frequency content in any biological signal and in separate frequency bands. The selected fea-

tures are transparent and suitable for explaining the behaviour of the underlying physiological

mechanisms present. They directly indicate and describe the mechanisms. While the SE esti-

mates the presence or absence of a physiologic mechanism, given frequency band, the MF and

PA estimate its median frequency and its intensity. Considering all these facts, the choice for

SE,MF, and PA also seems suitable for analyzing dummy intervals of EHG and TOCO signals.

The same features (SE,MF, PA) were used to analyze contraction and dummy intervals. If

using the same features, it is more straightforward to compare characterization and classifica-

tion results for different types of signal intervals.

Spectrograms

A spectrogram allows for the visualization of the changes of the power spectrum of a signal

over time. In order to derive spectrograms, the EHG and TOCO signals of the uterine records

were initially preprocessed using the four-pole band-pass digital Butterworth filter, with cut-

off frequencies at 0.08 Hz and 5.0 Hz, applied bi-directionally to yield zero-phase shift. The

sliding Hanning window of duration of 12.8 sec (256 signal samples) and short-time Fourier

transform were then used to derive the power spectra of the spectrograms.

Assessing separability, feature selection, and feature ranking

In order to estimate the ability of individual features to separate between preterm and term,

contraction and dummy intervals, to separate between the entire preterm and term EHG rec-

ords, and to assess the rank of their ability to classify preterm and term deliveries, we used the

two-sample t-test with a pooled variance estimate [45], the Bhattacaryya criterion, i.e., the min-

imum attainable classification error or Chernoff bound [35, 46, 47] and the relative entropy

criterion, also known as Kullback-Leibler distance or divergence [48].

We dealt with a large number of potential features that could be used for classification.

Using all the features for classification may have negative impact on the classification perfor-

mance due to the correlation between the features (redundant information), and overfitting

may occur. Even though the entire set of features has explainable physiological interpretation

or meaning, it is necessary to reduce the number of discriminative features to avoid overfitting,

to simplify the classifier, and to improve classification accuracy. To select the best subsets of

features for a variety of classification tasks in this study, we used the wrapper feature selection
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search strategy with the Sequential Forward Selection (SFS) method [49]. As a preprocessing

step to select features, the features are sorted according to the selected criterion estimating the

ability of individual features to separate groups. The available features of each of the classifica-

tion tasks of this study were initially sorted according to their descending values of the Bhatta-

caryya criterion. The SFS method selects a subset of features by sequentially adding the

features until a certain stopping condition is satisfied. Using the selected learning algorithm

and the misclassification error (MCE), i.e., the number of misclassified observations divided

by the total number of observations, as the performance indicator on each candidate features

subset, the SFS sequentialy searches for features. Data are divided into training and test sets.

The training set is used to select the features and to fit the selected model, while the test set is

used to evaluate the performance of the selected features. In order to evaluate and compare the

performance of each candidate feature subset, cross-validation is applied to the training set.

The SFS algorithm stops when the first local minimum of the cross-validation MCE on the

training set, as a function of the number of features, is found. However, the algorithm may

stop prematurely. A smaller MCE may be found by looking for the minimum of the MCE

function over a wider range of number of features. Therefore, the cross-validation MCE can be

derived over the entire set of features available. When the curve of the MCE as a function of

the number of features goes up, overfitting occurs. The minimum of the cross-validation MCE

on the training set, as a function of the number of selected features, defines the number of

needed features and their performance. In order to evaluate the performance of the selected

features, 20% holdout dividing the data into training and test sets, 10-fold cross-validation

applied to the training set, and the Quadratic Discriminant Analysis (QDA) learning algo-

rithm, were used for each of the classification tasks of this study.

However, different runs of the SFS algorithm result in different selected feature subsets. To

avoid this instability of the SFS method, and to form a stable subset of predictive features, we

applied a procedure based on the frequency-based aggregation of the selected features by run-

ning the SFS algorithm a significant number of times and recording the selected feature subset

after each run [50]. The aggregated frequency histogram of feature occurences was then used

to form the final feature subset by selecting the most frequent features in rank order as indi-

cated by histogram peaks [50]. The number of final selected features using this frequency-

based feature-aggregation and feature-selection procedure was defined by the minimum of the

average cross-validation MCE function as obtained on the training sets over repeated runs of

the SFS algorithm. In this study, 200 runs were used in each case.

Proposed method for predicting preterm birth

Fig 4 shows the signal processing flow chart of the proposed method for predicting preterm

birth. After manual annotating of contraction or dummy intervals, or neither, in a uterine

record, R, the entire selected (or available) signals (EHG signals, or EHG signals and TOCO

signal) of the record are preprocessed using a band-pass linear-phase filter with cut-off fre-

quencies at 0.08 Hz and 5.0 Hz (to reject signal baseline wander and higher frequencies above

5.0 Hz) producing the record R0–3; and with a bank of band-pass linear-phase filters with cut-

off frequencies corresponding to the frequency bands B0, B1, B2, and B3, producing subre-

cords R0, R1, R2, R3. Note that the TOCO signal is processed in the same manner as the EHG

signals in all procedures. We propose using the fourth-order band-pass digital Butterworth fil-

ters for the strict separation of the four frequency bands, which are applied bi-directionally to

each signal of the original record, R, to yield zero-phase shift. The Butterworth filters have a

smooth, monotonically changing frequency response, are maximally flat (no ripples) in the

passband and stopband, and are computationally non-intensive. The frequency response of
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the filters rolls off at -80 dB per decade, and after bi-directional use even at -160 dB per decade.

After that, the sample entropy, SE, is derived for each signal of an annotated data interval (con-
traction or dummy), or for each signal of the entire record, for each of the subrecords R0, R1,

R2, R3, which correspond to the frequency bands B0, B1, B2, and B3. Next, the Hanning

weighting window is applied to each signal of the annotated data interval, or to each signal of

the entire record, of the record R0–3 to attenuate spectral leakage, and the power spectra are

calculated using the Fourier transform. The power spectra are then smoothed using a moving

average over the frequency interval of 0.1 Hz, and normalized by their maximum components.

Extraction of the median frequency, MF, and peak amplitude, PA, of the normalized power

spectrum follows for each signal of the annotated data interval, or for each signal of the entire

Fig 4. Signal processing flow chart of the proposed method for predicting preterm birth.

https://doi.org/10.1371/journal.pone.0202125.g004
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record, for each of the frequency bands: B0, B1, B2, and B3. Finally, the extracted features of

the annotated data interval, or of entire record, lead to a classifier judging the danger of pre-

term birth.

Classification

The main task of this study was to justify the importance of the influence of the maternal heart

on the uterus for the accurate prediction of preterm birth via variety of the classification tasks,

and not necessarily to seek for the best classifier. To assess the classification performance of

the variety of classification tasks, and for the easier and consistent comparison of the perfor-

mance results obtained, the same classifier, i.e., the QDA classifier, was used in each case. In

comparison to a few other standard classifiers, the QDA classifier already reliably classified

between pregnancy and labor contractions [20], and between preterm and term, early and later
records of the TPEHG DB [33], therefore the QDA classifier seems suitable for the domain of

predicting preterm birth. In the scope of this study, we have also preliminarily tested a few

other standard classifiers: naive Bayes, k nearest neighbour, linear discriminant analysis, deci-

sion tree, and support vector machine. Among the tested classifiers, if using the TPEHG DB,

the highest classification accuracy obtained was for the QDA classifier. Moreover, the pro-

posed method using the QDA classifier and the TPEHG DB outperformed all currently exist-

ing methods for predicting preterm birth. For these reasons, the QDA classifier seems suitable

choice for this study.

Classification performance results were summarized in terms of Sensitivity, Se = TP/(TP
+FN), Specificity, Sp = TN/(TN+FP), and Classification Accuracy, CA = (TP+TN)/(TP+FN
+TN+FP), where TP denotes the number of true positives, FN the number of false negatives,

TN the number of true negatives, and FP the number of false positives; and in terms of the

Area Under the ROC Curve (AUC) [51] to assess the predictive confidence of discrimination

accuracy. Cross-validation with five-folds (TPEHG DB), ten-folds (TPEHGT DS, TPEHG

DB), and with 30 repetitions was used in each case.

To avoid an overfitting problem due to the unequal prior probabilities of the classes of data-

sets (a classifier would be more sensitive in detecting the majority class than the minority

class), and to provide more accurate results in terms of the predictive confidence of discrimi-

nation accuracy, data balancing using the over-sampling approach was employed. The Stan-

dard Synthetic Minority Over-sampling Technique (SMOTE) [52] was used to balance the

contraction and dummy intervals of the TPEHGT DS, while the Adaptive Synthetic Sampling

Approach (ADASYN) [53] was used to balance preterm and term records of the TPEHG DB.

The SMOTE technique forces the decision region of the minority class to become more gen-

eral and provides an equal number of samples in both classes, while the ADASYN approach

provides a balanced representation of data distribution in the resulting datasets.

Results

Characterization of preterm and term, contraction and dummy intervals

Records of the TPEHGT DS were separated into two groups, nonlabor and labor. There is little

consensus regarding the definitions of labor onset in the research literature [54]. The boundary

was set intentionally early, to three weeks, likely to the latent phase of labor or even earlier. Ini-

tially, several preterm and term records of the nonlabor and labor groups were characterized in

terms of spectrogram time-frequency representation. Figs 5 and 6 show the spectrograms of

the EHG signal S3 and TOCO signal of a preterm nonlabor record and of a term nonlabor

record. For both records, the time interval between recording and delivery is ten weeks. In the

spectrograms of EHG signals maternal heart activity above 1.0 Hz and with higher harmonics
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can be observed. The activity is stronger for the term record. Similarly, strong maternal heart

activity above 1.0 Hz is present in the spectrogram of the TOCO signal for the term record, but

it is absent in the spectrogram of the TOCO signal for the preterm record. (Note that the

TOCO signal carries information about the mechanical activity of the uterus). The absence of

the maternal heart activity in the spectrogram of the TOCO signal can also be observed for pre-
term nonlabor record from Fig 2. These observations suggest a stronger presence of a maternal

heart activity for term nonlabor records.

Contraction and dummy intervals of preterm and term records of the TPEHGT DS were

characterized in terms of normalized power spectra. The separation of the records into nonla-

bor and labor groups, with boundary of three weeks, resulted in 35 preterm nonlabor (contrac-
tion or dummy) intervals, 12 preterm labor intervals, 41 term nonlabor intervals, and 12 term

Fig 5. Spectrograms of the record tpehgt_p006 (preterm nonlabor record, recorded in the 26th week, delivery in the 36th week) of the

TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g005

Fig 6. Spectrograms of the record tpehgt_t011 (term nonlabor record, recorded in the 29th week, delivery in the 39th week) of the

TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g006
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labor intervals. Figs 7–9 show the overlaid normalized power spectra of the EHG signals S2,

S3, and TOCO signal for contraction intervals. Besides the content in the frequency band B0

due to uterine contractions and maternal respiration, the most obvious and strong component

in the spectra of contraction intervals for term nonlabor group of records is activity due the

maternal heart in the frequency band B1 (Figs 7, 8, and 9), with higher harmonics in the fre-

quency bands B2 and B3 (Figs 7 and 8). The frequency of the main component in the fre-

quency band B1 ranges from approximately 1.2 Hz (72 bpm) to 1.5 Hz (90 bpm). The

frequencies of the peaks in the frequency bands B2 and B3 were additionally verified for a few

significant examples. The frequencies were the exact second and third harmonics of the fre-

quency of the peak in the frequency band B1. The presence of the maternal heart activity is

expected since the ratio between the ECG activity and EHG bursts is about 20. This activity in

the frequency band B1 is actually absent, or weak, in all signals for preterm nonlabor or preterm
labor intervals, it is stronger in all signals for term nonlabor intervals, it is especially strong in

the TOCO signals (Fig 9), and it is again weak in the EHG signal S3 (Fig 8), or absent in the

TOCO signal (Fig 9), for term labor intervals. (S1 Fig also shows the overlaid normalized

power spectra of the EHG signal S1 for contraction intervals).

Fig 7. Normalized power spectra of contraction intervals of signal S2 of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g007
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Figs 10–12 show the overlaid normalized power spectra of the EHG signals S2, S3, and

TOCO signal for dummy intervals. Activity due to the maternal heart in the frequency bands

B1, B2, and B3, is again present and even stronger. This is reasonable since during dummy
intervals there are no contractions present. The major component in the frequency band B0 is

the maternal respiration component. As for contraction intervals, the same pattern regarding

presence and intensity of maternal heart activity in the frequency bands B1, B2, and B3, in all

signals for preterm and term, nonlabor and labor, dummy intervals may be observed. The activ-

ity is again especially strong in the frequency band B1 in term nonlabor group for the TOCO

signal (Fig 12). (S2 Fig also shows the overlaid normalized power spectra of the EHG signal S1

for dummy intervals).

Fig 13 shows box plots of normalized peak amplitudes, PA, in the frequency band B1 of sig-

nals S1, S2, S3, and TOCO, for preterm and term, nonlabor and labor, groups of contraction
and dummy intervals. The box plots reveal that the influence of the maternal heart is the stron-

gest in signal S1 for dummy intervals. The maternal heart activity is much stronger for term
contraction and dummy intervals than for preterm contraction and dummy intervals. The activ-

ity does not change much from the preterm nonlabor to preterm labor group, it is the highest

Fig 8. Normalized power spectra of contraction intervals of signal S3 of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g008
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for the term nonlabor group, and drops in signals S2, S3, and TOCO for the term labor group.

The activity in the EHG signals is also stronger for dummy intervals than for contraction inter-

vals in all four groups. Table 1 summarizes the values of the median of the normalized peak

amplitudes, PA, in the frequency band B1 for the groups of records, and their relations for sig-

nals. Contraction intervals, in comparison to dummy intervals, show lower median of the PA
for all EHG signals in all four groups of records, and comparable median of the PA for the

TOCO signal in all four groups of records. For the EHG signals, this is likely due to contrac-

tions yielding higher PA in the frequency band B0, and consequently low normalized peak

amplitude, PA, in the frequency band B1. Maternal heart activity in the frequency band B1 is

high for term nonlabor and for term labor groups, but not for preterm nonlabor and preterm
labor groups for both types of intervals. If the labor is close, or if there is a danger of preterm

birth, the activity is low. Moreover, the highest ratios between the medians of the PA for term
nonlabor and preterm nonlabor groups, or between the medians of the PA for term nonlabor

and maximum of preterm groups, were found in the TOCO signal, and then in the EHG signal

S2, for both, contraction and dummy intervals.

Fig 9. Normalized power spectra of contraction intervals of TOCO signal of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g009
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Fig 14 shows the overlaid normalized power spectra of the EHG signals S1, S2, S3, and

TOCO signal of all 53 non-pregnant dummy intervals of the records of the TPEHGT DS. The

major component in the frequency band B0 for the signals is the maternal respiration compo-

nent. The intensity of the maternal heart activity in the frequency bands B1, B2, and B3, for the

EHG signals is present, but weak. The pattern of low influence of the maternal heart in the

EHG signals of non-pregnant women (Fig 14) is very similar to the pattern for preterm nonla-

bor, preterm labor, and term labor, contraction and dummy, groups of pregnant women, but

not to the pattern for the term nonlabor group of pregnant women (Figs 7, 8, 10 and 11). In

addition, there is no obvious or isolated peak in the frequency bands B1, B2, and B3, for the

TOCO signal, suggesting that there is no significant mechanical activity present due the influ-

ence of the maternal heart. (S3 Fig also shows the normalized power spectra of the signals of

the ninth non-pregnant dummy interval of the record tpehgt_n002 from Fig 3. S1 File contains

the filtered signals of the interval, while the S2 File contains the normalized power spectra of

the filtered signals of the interval). All these observations regarding contraction and dummy
intervals, and non-pregnant dummy intervals, suggest that the uterus responds strongly to

maternal heart activity for term pregnancies in the nonlabor phase only.

Fig 10. Normalized power spectra of dummy intervals of signal S2 of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g010
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Fig 15 show box plots of normalized peak amplitudes, PA, in the frequency band B1 of sig-

nals S1, S2, S3, and TOCO, for all non-pregnant dummy intervals, and for all preterm contrac-
tion and dummy intervals, versus all term contraction and dummy intervals. Distributions of

non-pregnant dummy intervals are quite comparable to distributions of preterm contraction
and dummy intervals. The influence of the maternal heart is the strongest in signal S1. In

terms of separability of preterm and term intervals, distributions of PA for dummy intervals of

pregnant women offer higher separability for each signal.

Fig 16 shows box plots of sample entropies, SE, in the frequency band B1 of signals S1, S2,

S3, and TOCO, for all non-pregnant dummy intervals, and for all preterm contraction and

dummy intervals, versus all term contraction and dummy intervals. Note that the highest values

of SE for non-pregnant dummy intervals are in the TOCO signal, suggesting that the maternal

heart activity is barely present, or absent, in the TOCO signal for non-pregnant women. On

the other hand, the low values of SE for preterm and term, contraction and dummy intervals in

the TOCO signal do suggest the presence of maternal heart activity in the frequency band B1

for pregnant women. These low values of SE in the TOCO signal for pregnant women are also

lower than the values of SE in the EHG signals S1, S2, and S3, suggesting higher regularity of

Fig 11. Normalized power spectra of dummy intervals of signal S3 of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g011
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the TOCO signal in the frequency band B1 for pregnant women. Distributions of SE for con-
traction and for dummy intervals in signals S1, S2, S3, and TOCO of pregnant women do offer

separability in the sense of classification of preterm versus term intervals. Moreover, the distri-

bution of SE for non-pregnant dummy intervals in the TOCO signal offers very high separabil-

ity between the dummy intervals of non-pregnant women, and contraction and dummy
intervals of pregnant women.

Finally, Fig 17 shows box plots of median frequencies, MF, in the frequency band B1 of sig-

nals S1, S2, S3, and TOCO, for all non-pregnant dummy intervals, and for all preterm contrac-
tion and dummy intervals, versus all term contraction and dummy intervals.

Classification of preterm and term uterine records

Feature ranking using the TPEHGT DS. For the classification of preterm and term, con-
traction or dummy intervals of the TPEHGT DS, the sample entropy, SE, median frequency of

normalized power spectrum, MF, and peak amplitude of normalized power spectrum, PA,

were derived in each of the frequency bands B0, B1, B2, and B3, and for each of the input sig-

nals, given contraction or dummy intervals, resulting in 12 features per input signal per

Fig 12. Normalized power spectra of dummy intervals of TOCO signal of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g012
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interval. In the majority of cases the maximum power spectrum component, Pmax, needed for

normalization of the spectrum was found in the frequency band B0 due to maternal respiration

and contractions, therefore PA of the frequency band B0 was omitted, resulting in 11 features

per signal per interval.

Table 2 summarizes the significance of each of the extracted features in each of the fre-

quency bands for signals S2, S3, and TOCO to separate preterm and term, contraction and

dummy intervals of the TPEHGT DS. The SMOTE technique to equalize the number of sam-

ples in two separate classes increased the number of samples in preterm minority class from 47

to 53. The values of the two-sample t-test, p, and the values of the Bhattacaryya criterion, CB,

with its ranks for individual features obtained from contraction and dummy intervals, are

shown. The values of the CB are also shown in Fig 18 in the form of bar charts. According to

the ranks of the features, the most significant individual features for classification appear to be

the PA features from the frequency bands B1, B2, and B3, especially those from dummy inter-

vals. The differences in the ranks, if calculated for each individual signal, and for both types of

intervals, using the relative entropy criterion did not differ from the ranks of the Bhattacaryya

Fig 13. Box plots of normalized peak amplitudes, PA, in the frequency band B1 of signals S1, S2, S3, and TOCO, for preterm and term,

nonlabor and labor, groups of contraction and dummy intervals. The line in the middle of each box is the sample median. The tops and

bottoms of each box are the 25th and 75th percentiles of the samples. The wiskers represent the 10th and 90th percentiles. Crosses are outliers.

Notches display the variability of the median between samples.

https://doi.org/10.1371/journal.pone.0202125.g013
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criterion until the sixth place, in each case. (S4 Fig summarizes the significance of each of the

extracted features in each of the frequency bands for signals S2, S3, and TOCO, to also separate

labor and nonlabor, contraction and dummy intervals of the TPEHGT DS. The SMOTE tech-

nique increased the number of samples in the labor minority class from 24 to 76).

Feature selection and classification of contraction and dummy intervals of the TPEHGT

DS. Inspired by the high individual separation ability of the normalized peak amplitude of

the power spectrum, PA, in the frequency band B1, PAB1, for EHG signal S2, and for TOCO

signal, reflecting the influence of maternal heart activity (Tables 1 and 2, and Fig 18), we first

tested its individual classification performance. Table 3 shows the classification performance

results obtained for preterm and term, nonlabor, and for preterm and term, contraction and

dummy, intervals of the TPEHGT DS. For preterm and term nonlabor groups, if using both sig-

nals, dummy intervals showed higher classification accuracy, i.e., CA = 76.83%, than contrac-
tion intervals. If considering all preterm and term intervals, contraction intervals yielded higher

performance, i.e., CA = 74.53%.

To further investigate possibilities for the efficient classification between preterm and term,

contraction and dummy intervals, and between labor and nonlabor, contraction and dummy
intervals of the records of the TPEHGT DS, i.e., four classification tasks, the EHG signals S2

and S3 were used due to their orthogonality, and the TOCO signal carrying mechanical infor-

mation of maternal heart activity. The EHG signal S3 was chosen, since it was recorded from

the lower, stretchable part of the uterus, and closer to the cervix (the bottom electrodes, Fig 1).

In order to test the classification ability of the TOCO signal, the four classification tasks were

performed in two variants, using the EHG signals S2 and S3, and using the EHG signal S2 and

TOCO signal.

We encountered a relatively large number of potential features that can be used for classifi-

cation, i.e., 11 features per signal per interval. Using two signals yields 22 features per interval.

To select the relevant features, the SFS method was used. Fig 19 shows the average values of

Table 1. The values of the median of the normalized peak amplitudes, PA, in the frequency band B1 for the groups of records.

TPEHGT DS

Group Median PA, band B1, Signals S1, S2, S3, TOCO

Contraction intervals Dummy intervals

S1 S2 S3 TOCO S1 S2 S3 TOCO

35 preterm nonlabor intervals 0.045 0.015 0.026 0.015 0.144 0.024 0.065 0.015

12 preterm labor intervals 0.054 0.024 0.050 0.025 0.148 0.029 0.058 0.016

41 term nonlabor intervals 0.076 0.038 0.062 0.123 0.251 0.096 0.132 0.084

12 term labor intervals 0.060 0.039 0.065 0.013 0.328 0.055 0.167 0.019

41 term nonlabor intervals 0.076 0.038 0.062 0.123 0.251 0.096 0.132 0.084

35 preterm nonlabor intervals 0.045 0.015 0.026 0.015 0.144 0.024 0.065 0.015

Average 0.061 (0.027) 0.044 (0.069) 0.198 (0.060) 0.099 (0.050)

Ratio 1.689 2:533 2.385 8:200 1.743 4:000 2.031 5:600
41 term nonlabor intervals 0.076 0.038 0.062 0.123 0.251 0.096 0.132 0.084

Max (47 preterm intervals) 0.054 0.024 0.050 0.025 0.148 0.029 0.065 0.016

Average 0.065 (0.031) 0.056 (0.074) 0.200 (0.063) 0.099 (0.050)

Ratio 1.407 1:583 1.240 4:920 1.696 3:310 2.031 5:250

The highest values of the median of the PA per signal are in bold. Boxed are the highest ratios of the medians for the EHG signals and for TOCO signal. Bracketed are

the averages of the medians for the signals with the highest ratios.

https://doi.org/10.1371/journal.pone.0202125.t001
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the misclassification errors, MCE, obtained on the training sets of the TPEHGT DS for the

four classification tasks with two variants.

Table 4 shows the selected features with their ranks for the variety of classification tasks

after using the frequency-based feature-aggregation and feature-selection procedure. The best

individual features may not have a high rank, or may not even be selected. Among the four

classification tasks with two variants, the most frequently selected feature, and with the highest

rank (three times the first place and twice the second) appear to be the sample entropy of signal

S2 in the frequency band B2, i.e., the presence or absence of the second harmonic component

of the maternal heart rate. The second most selected feature is the median frequency of signal

S2 in the frequency band B2 (twice the first place and three times the third). The third most

selected feature is the median frequency of signal S2 in the frequency band B0 (once the first

place and twice the second). The fourth feature is the sample entropy of signal S2 in the fre-

quency band B3, i.e., the presence or absence of the third harmonic component of the maternal

heart rate (twice the second place and once the third). Regarding the TOCO signal, sample

entropies also played an important role. Sample entropies were selected in the frequency band

Fig 14. Normalized power spectra of non-pregnant dummy intervals of signals S1, S2, S3, and TOCO of the records of the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g014
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B0 (once the first place and once the second), in the frequency band B1 (once the third place),

and in the frequency band B2 (once the second place).

Table 5 shows the classification performance results obtained for preterm and term, contrac-
tion and dummy intervals, and for the labor and nonlabor, contraction and dummy intervals of

the records of the TPEHGT DS. Basically, our goal here was to evaluate different aspects like:

selection of intervals (contraction or dummy), selection of signals (EHG, or EHG and TOCO),

and their influence on the classification capability.

Table 5A and 5B summarize classification performances, considering the classification abil-

ity of signals S2 and S3, or signals S2 and TOCO, to classify preterm and term, contraction and

dummy intervals. Dummy intervals provided higher classification accuracies than contraction
intervals for signals S2 and S3, CA = 88.79% versus CA = 88.68%, and for signals S2 and

TOCO, CA = 91.51% versus CA = 90.57%. Moreover, for dummy intervals, the EHG signal S2

in combination with the TOCO signal provided higher classification accuracy, CA = 91.51%,

than in combination with the EHG signal S3, CA = 88.79%.

Another important aspect is the classification ability of signals S2 and S3, or signals S2 and

TOCO, for the task of classifying between labor and nonlabor, contraction and dummy

Fig 15. Box plots of normalized peak amplitudes, PA, in the frequency band B1 of signals S1, S2, S3, and TOCO, for all non-pregnant
dummy intervals and for all preterm and term, contraction and dummy intervals. Also see caption to Fig 13.

https://doi.org/10.1371/journal.pone.0202125.g015
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intervals. Table 5C and 5D summarize these classification performances. Again, dummy inter-

vals provided higher classification accuracy than contraction intervals for signals S2 and S3,

CA = 93.42% versus CA = 88.82%, but performance was equal for signals S2 and TOCO, for

both types of intervals, CA = 92.11%. This time, for dummy intervals, the combination of the

EHG signals S2 and S3 provided higher classification accuracy, CA = 93.42%, than the combi-

nation of the EHG signal S2 and TOCO signal, CA = 92.11%.

Yet another very important aspect is differentiating between records of non-pregnant and

pregnant women. Classifying between non-pregnant dummy intervals of the records of non-

pregnant women and contraction and dummy intervals of the records of pregnant women

could reveal the evidence that the electro-mechanical influence of the maternal heart is signifi-

cantly higher (and measurable through the EHG and TOCO signals) during pregnancy.

Table 6 shows the selected features with their ranks for the task of classifying between non-
pregnant dummy intervals, and preterm and term, contraction and dummy intervals using the

SFS method and frequency-based feature-aggregation and feature-selection procedure. The

numbers of selected features is low for each of the four classification tasks with two variants. In

all cases sample entropies from different frequency bands were selected. If using signals S2 and

Fig 16. Box plots of sample entropies, SE, in the frequency band B1 of signals S1, S2, S3, and TOCO, for all non-pregnant dummy intervals

and for all preterm and term, contraction and dummy intervals. Also see caption to Fig 13.

https://doi.org/10.1371/journal.pone.0202125.g016
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S3, contraction intervals needed larger numbers of features (six, or five, features for non-
pregnant dummy versus preterm, or term, respectively) than dummy intervals (three, or two,

features for non-pregnant dummy versus preterm, or term, respectively). If using signals S2 and

TOCO, only one feature, sample entropy from the frequency band B2, or B3, of the TOCO sig-

nal, i.e., presence or absence of the second or third harmonic of the maternal heart rate, was

selected for any interval type and for any classification task.

Table 7 summarizes classification performance results for classifying non-pregnant dummy

intervals, and preterm and term, contraction and dummy intervals. The only classification task

where the classification accuracy was less than 100% was classifying between non-pregnant
dummy intervals and preterm contraction intervals, and using the EHG signals S2 and S3,

CA = 99.06%. This result suggests that characteristics of dummy intervals of the records of

non-pregnant women are much different from the characteristics of contraction and dummy
intervals of the records of pregnant women. In addition, more features were needed for classi-

fication between non-pregnant dummy intervals and preterm contraction or dummy intervals

than for the classification between non-pregnant dummy intervals and term contraction or

dummy intervals, suggesting that the characteristics of the records of non-pregnant women are

Fig 17. Box plots of median frequencies, MF, in the frequency band B1 of signals S1, S2, S3, and TOCO, for all non-pregnant dummy
intervals and for all preterm and term, contraction and dummy intervals. Also see caption to Fig 13.

https://doi.org/10.1371/journal.pone.0202125.g017
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more similar to the characteristics of the records with preterm delivery than to the characteris-

tics of the records with term delivery for pregnant women.

Feature ranking using the TPEHG DB. To further verify the influence of the maternal

ECG on the uterus, and to further verify the classification performance of the proposed

method for predicting preterm birth (Fig 4), the method was tested using publicly available

TPEHG DB. The records of the TPEHG DB do not contain the TOCO signal, therefore the

influence of the maternal ECG on the uterus could only be verified in the electrical sense.

Moreover, there are no annotated contraction (or dummy) intervals in the TPEHG DB. Thus,

the input data intervals of the records were the entire EHG records with a duration of 30 min,

which are actually composed from sequences of contraction and non-contraction, dummy,
intervals.

To verify the influence of the maternal ECG on the uterus in the electrical sense, we visual-

ized a large number of records of the TPEHG DB recorded early and later in terms of spectro-

grams. Visual examination of the spectrograms confirmed the pattern of strong presence of

the maternal heart rate for term records, but not for preterm records, being recorded early or

later. S5 and S6 Figs show the EHG signals S2 and S3, and the spectrograms of EHG signals S2

Table 2. The values of the two-sample t-test (p values), and of the Bhattacaryya criterion, CB, with its ranks per group of signals, to separate preterm and term, con-
traction and dummy intervals of the TPEHGT DS.

TPEHGT DS

Signal Contraction intervals (53 preterm / 53 term)

Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA
S2 (p) 0.138 0.008 0.004 0.271 �1−3 �1−3 0.028 �1−3 �1−3 0.886 �1−3

S3 (p) 0.139 �1−3 0.631 �1−3 0.002 0.295 �1−3 0.335 0.554 �1−3 0.013

TOCO (p) 0.019 0.634 0.038 0.046 �1−3 0.014 0.564 0.003 0.254 0.210 0.011

S2 (CB) 0.007 0.017 0.007 �1−3 0.147 0.040 0.003 0.292 0.047 �1−3 0.072

S3 (CB) 0.005 0.007 0.009 0.009 0.054 �1−3 0.015 0.009 0.003 0.028 0.085

TOCO (CB) 0.007 0.008 0.015 0.004 0.276 0.059 0.004 0.088 0.038 0.002 0.041

S2 (CB rank) 15 9 16 21 2 7 19 1 6 22 4

S3 17 14 12 11 5 20 10 13 18 8 3

S2 (CB rank) 14 11 16 21 3 9 19 1 7 22 5

TOCO 15 13 12 17 2 6 18 4 10 20 8

Signal Dummy intervals (53 preterm / 53 term)

Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA
S2 (p) 0.004 0.066 �1−3 0.785 �1−3 �1−3 �1−3 �1−3 �1−3 0.632 �1−3

S3 (p) 0.952 0.332 0.128 0.696 �1−3 0.866 0.022 0.002 0.274 0.016 �1−3

TOCO (p) 0.013 0.460 �1−3 0.227 �1−3 0.068 0.554 �1−3 0.118 0.193 �1−3

S2 (CB) 0.005 0.003 0.016 �1−3 0.326 0.048 0.039 0.473 0.064 0.018 0.188

S3 (CB) �1−3 0.003 0.035 �1−3 0.178 0.016 0.006 0.226 0.016 0.009 0.232

TOCO (CB) 0.006 0.006 0.055 0.004 0.399 0.009 0.005 0.124 0.022 �1−3 0.048

S2 (CB rank) 17 18 12 22 2 8 9 1 7 11 5

S3 20 19 10 21 6 14 16 4 13 15 3

S2 (CB rank) 18 20 13 22 3 8 10 1 6 12 4

TOCO 16 15 7 19 2 14 17 5 11 21 9

Those p values�1−3 and ranks of the first 11 features according to CB per group of signals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t002
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Fig 18. Values of the Bhattacaryya criterion, CB, for individual features to separate preterm and term, contraction and dummy intervals of

the TPEHGT DS.

https://doi.org/10.1371/journal.pone.0202125.g018

Table 3. Classification performance results obtained for preterm and term, nonlabor, and for preterm and term, contraction and dummy, intervals of the TPEHGT

DS.

TPEHGT DS

QDA (PAB1)

10-folds

41 preterm nonlabor / 41 term nonlabor

Contraction intervals Dummy intervals

[%] Se Sp CA AUC Se Sp CA AUC
Signal S2 90 39 64.63 65.66 95 54 74.39 78.42

Signal TOCO 95 51 73.49 76.40 93 51 71.95 76.43

Signals S2 and TOCO 93 59 75.61 77.71 90 63 76.83 82.70

QDA (PAB1)

10-folds

53 preterm / 53 term
Contraction intervals Dummy intervals

[%] Se Sp CA AUC Se Sp CA AUC
Signal S2 92 40 66.04 65.42 96 43 69.81 75.30

Signal TOCO 96 42 68.87 70.64 94 40 66.98 72.61

Signals S2 and TOCO 94 55 74.53 76.82 92 49 70.75 79.98

The highest CA and AUC per combination of signals and intervals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t003

Classification of preterm and term uterine records

PLOS ONE | https://doi.org/10.1371/journal.pone.0202125 August 28, 2018 29 / 49

https://doi.org/10.1371/journal.pone.0202125.g018
https://doi.org/10.1371/journal.pone.0202125.t003
https://doi.org/10.1371/journal.pone.0202125


and S3, of a preterm record (delivery in 30th week) and of a term record (delivery in 39th

week). Both records were recorded early, in the 25th week of pregnancy. The spectrograms of

term record show strong influence of the maternal heart rate, while the influence is weak, or

barely present, for preterm record.

For the classification of the entire preterm and term EHG records, the sample entropy, SE,

median frequency, MF, and peak amplitude, PA, of the normalized power spectrum were

derived, in each of the frequency bands B0, B1, B2, and B3, and for each of the EHG signals,

S1, S2, and S3, of the database. Due to the normalization of each power spectrum, the PA from

the frequency band B0 was omitted, resulting in 11 features per signal per record. The ADA-

SYN technique, used in order to balance the representation of data distribution in two separate

classes, increased the number of samples in preterm minority class for early records form 19 to

140, and for all records from 38 to 256. Table 8 summarizes the significance of each of the

extracted features in each frequency band for signals S1, S2, and S3 to separate preterm and

term, early and all, records of the TPEHG DB. The values of the two-sample t-test, p, and the

values of the Bhattacaryya criterion, CB, with its ranks for individual features obtained from

early and all EHG records, are shown. The values of the CB for all EHG records are also shown

Fig 19. Average values of the misclassification errors, MCE, obtained on the training sets of the TPEHGT DS using the SFS method.

https://doi.org/10.1371/journal.pone.0202125.g019
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in Fig 20 in the form of bar charts. According to the ranks of the features, the most significant

individual features for classification between preterm and term records of the TPEHG DB

again appear to be the PA features from the frequency bands B1, B2 and B3. The highest sepa-

rability between preterm and term records for the PA features in the frequency bands B1, B2,

and B3 confirms strong influence of the maternal ECG on the uterus. The differences in the

ranks, if calculated for each individual signal, for early records or for all records, using the

Table 4. Selected features and their ranks to classify between preterm and term, and labor and nonlabor, contraction and dummy intervals of the TPEHGT DS.

TPEHGT DS

SFS (200 runs)

(QDA algorithm)

53 preterm / 53 term
Signal S2 Signal S3

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (12) - 2 - 9 - 1 3 10 11 - - 12 5 - - 6 4 - - - 8 7

Dummy intervals (12) - 9 7 4 11 1 3 - 2 - 5 - 12 6 8 10 - - - - - -

Signal S2 Signal TOCO

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (9) - 1 - - - 2 6 - 7 - - 4 8 5 3 - - 9 - - - -

Dummy intervals (11) - 9 5 3 - 1 6 - 7 - 4 2 8 11 - - - - 10 - - -

SFS (200 runs)

(QDA algorithm)

76 labor / 76 nonlabor

Signal S2 Signal S3

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (12) 5 4 - 3 - 2 8 - 11 6 - 12 9 - - - - 10 - 1 7 -

Dummy intervals (11) - - 9 7 - 11 1 - 2 4 8 - - 3 - - 5 - - 6 10 -

Signal S2 Signal TOCO

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (10) - 2 9 8 7 - 3 - 4 - - 1 5 6 - - 10 - - - - -

Dummy intervals (8) - 6 - - - 8 1 - 3 - - 5 7 4 - - 2 - - - - -

The number of selected features per classification task are in brackets. The top three ranked features per classification task and combination of signals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t004

Table 5. Classification performance results obtained for preterm and term, contraction and dummy intervals, and for nonlabor and labor, contraction and dummy
intervals of the TPEHGT DS.

TPEHGT DS

10-folds A) Signals S2, S3 (53 preterm / 53 term) B) Signals S2, TOCO (53 preterm / 53 term)

Contraction intervals Dummy intervals Contraction intervals Dummy intervals

[%] Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC
QDA(SFS) (12, 12, 9, 11) 89 89 88.68 94.04 87 91 88.79 95.85 89 92 90.57 95.65 91 92 91.51 95.56

10-folds C) Signals S2, S3 (76 labor / 76 nonlabor) D) Signals S2, TOCO (76 labor / 76 nonlabor)
Contraction intervals Dummy intervals Contraction intervals Dummy intervals

[%] Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC
QDA(SFS) (12, 11, 10, 8) 83 95 88.82 87.79 88 99 93.42 95.02 87 97 92.11 96.14 87 97 92.11 94.61

The number of features per type of interval are in brackets. The highest CA and AUC per combination of intervals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t005
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relative entropy criterion, did not differ from the ranks of the Bhattacaryya criterion until the

fifth place in each case.

Feature selection and classification of preterm and term EHG records of the TPEHG

DB. The SFS method was employed to select the relevant features. Due to their orthogonality,

the EHG signals S2 and S3 were used to classify between early preterm and term records, pro-

viding 22 candidate features. However, for the task of classifying all records of the database, a

Table 6. Selected features and their ranks to classify between non-pregnant dummy intervals, and preterm and term, contraction and dummy intervals of the

TPEHGT DS.

TPEHGT DS

SFS (200 runs)

(QDA algorithm)

53 non-pregnant / 53 preterm
Signal S2 Signal S3

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (6) 5 - - - - 1 - - 2 - - 6 - - - - 4 - - 3 - -

Dummy intervals (3) 1 - - - - - - - 3 - - 2 - - - - - - - - - -

Signal S2 Signal TOCO

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (1) - - - - - - - - - - - - - - - - - - - 1 - -

Dummy intervals (1) - - - - - - - - - - - - - - - - 1 - - - - -

SFS (200 runs)

(QDA algorithm)

53 non-pregnant / 53 preterm
Signal S2 Signal S3

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (5) 5 - - - - 2 4 - 1 - - - 3 - - - - - - - - -

Dummy intervals (2) 1 - - - - 2 - - - - - - - - - - - - - - - -

Signal S2 Signal TOCO

Band B0 Band B1 Band B2 Band B3 Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA SE MF SE MF PA SE MF PA SE MF PA
Contraction intervals (1) - - - - - - - - - - - - - - - - 1 - - - - -

Dummy intervals (1) - - - - - - - - - - - - - - - - 1 - - - - -

The number of selected features per classification task are in brackets. The top three ranked features per classification task and combination of signals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t006

Table 7. Classification performance results obtained for non-pregnant dummy intervals versus preterm and term, contraction and dummy intervals of the TPEHGT

DS.

TPEHGT DS

10-folds Signals S2, S3 (53 non-pregnant / 53 preterm) Signals S2, TOCO (53 non-pregnant / 53 preterm)

Contraction intervals Dummy intervals Contraction intervals Dummy intervals

[%] Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC
QDA(SFS) (6, 3, 1, 1) 100 98 99.06 99.78 100 100 100 100 100 100 100 100 100 100 100 100

10-folds Signals S2, S3 (53 non-pregnant / 53 term) Signals S2, TOCO (53 non-pregnant / 53 term)

Contraction intervals Dummy intervals Contraction intervals Dummy intervals

[%] Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC Se Sp CA AUC
QDA(SFS) (5, 2, 1, 1) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

The number of features per type of interval are in brackets. The highest CA and AUC per combination of intervals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t007
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much lower minimum of the misclassification error function (and consequently higher classi-

fication accuracy) was obtained if using all three EHG signals, providing 33 candidate features.

Fig 21 shows the average values of the misclassification errors, MCE, obtained on the training

and test sets for both classification tasks. With respect to the obtained minima of the MCE

functions for the training sets, all 22 available features were selected to classify between early
preterm and term records (a minimum of 0.066 at 22nd feature), and the first 32 features to

classify between all preterm and term records (a minimum of 4.368 at 32nd feature). Table 9

shows the selected features with their ranks for both classification tasks after using the fre-

quency-based feature-aggregation and feature-selection procedure. For the task of classifying

between early preterm and term records, the first two, fourth, fifth, seventh, and eighth, selected

features were the sample entropies from all four frequency bands, while for the task of classify-

ing between all preterm and term records the first six, ninth, and tenth selected features were

again the sample entropies from all four frequency bands. The second most frequently selected

feature was median frequency, and then the peak amplitude of the normalized power

spectrum.

Table 10 summarizes the classification performance results obtained for preterm and term
EHG records recorded early, and for all preterm and term EHG records of the TPEHG DB. For

early records, and cross-validation with five- and ten-folds, the classification performances

obtained were CA = 100% (AUC = 100%) and CA = 100% (AUC = 100%). For all records, and

cross-validation with five- and ten-folds, the classification performances obtained were

CA = 95.75% (AUC = 99.17%) and CA = 96.33% (AUC = 99.44%), respectively. Fig 22 shows

classification accuracies obtained for early and all EHG records for different numbers of

Table 8. The values of the Bhattacaryya criterion, CB, with its ranks per group of signals to separate preterm and term, early and all EHG records of the TPEHG DB.

TPEHGT DS

Signal Early records (140 preterm / 143 term)

Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA
S2 (p) 0.206 0.156 0.161 0.622 0.031 0.044 0.127 0.837 0.192 0.004 �1−3

S3 (p) �1−3 0.006 �1−3 0.582 �1−3 �1−3 �1−3 0.327 0.163 0.003 �1−3

S2 (CB) 0.011 0.036 0.005 0.002 0.021 0.002 0.004 0.014 0.005 0.010 0.011

S3 (CB) 0.011 0.021 0.002 0.002 0.033 0.003 0.005 0.083 0.003 0.012 0.007

S2 (CB rank) 10 2 14 22 5 21 16 6 15 11 8

S3 9 4 19 20 3 18 13 1 17 7 12

Signal All records (256 preterm / 262 term)

Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA
S1 (p) �1−3 0.089 0.551 0.011 �1−3 �1−3 �1−3 0.011 �1−3 0.384 �1−3

S2 (p) �1−3 0.025 �1−3 �1−3 0.109 �1−3 0.059 0.395 �1−3 0.413 �1−3

S3 (p) �1−3 �1−3 0.009 �1−3 0.006 0.019 �1−3 0.002 0.007 0.885 �1−3

S1 (CB) �1−3 0.003 �1−3 �1−3 0.066 0.002 �1−3 0.222 0.005 0.004 0.033

S2 (CB) �1−3 0.002 0.004 �1−3 �1−3 0.003 �1−3 0.017 0.006 �1−3 �1−3

S3 (CB) �1−3 0.009 0.003 �1−3 0.030 �1−3 �1−3 0.066 0.002 0.002 �1−3

S1 (CB rank) 30 12 23 29 2 17 26 1 9 10 4

S2 31 18 11 22 25 13 27 6 8 19 32

S3 24 7 14 21 5 28 20 3 15 16 33

Those p values� 1−3 and the ranks of the first 11 features according to CB per group of signals are in bold.

https://doi.org/10.1371/journal.pone.0202125.t008
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features, while the features were ranked according to the Bhattacaryya criterion. Finally,

Table 11 summarizes the classification performances obtained by this and several other studies

in classifying preterm and term, early and all EHG records of the TPEHG DB.

Discussion

Measuring the influence of the maternal heart on the uterus

The influence of the maternal ECG signal on the uterine EHG activity is known [5, 37]. In

order to assess the intensity of the influence of the maternal ECG on the uterus in the electrical

sense, it is necessary to measure the maternal heart’s influence within the EHG signals. A pos-

sible concern is whether the very specific spectral peak in the frequency band B1 for the EHG

signals is present because of the maternal heart rate or some other electrophysiological phe-

nomenon. The maternal heart is close to the uterus and produces a permanent, and the stron-

gest, electrical signal in the body. The ratio between the amplitudes of the ECG and EHG

signals is approximately 20, so it is likely that the maternal heart rate component with higher

harmonics will be present. Considering term nonlabor uterine records of the TPEHGT DS, or

term early EHG records of the TPEHG DB, a strong activity in the frequency band B1 for the

EHG signals is present permanently and throughout the records (Fig 6 and S6 Fig), likely due

Fig 20. The values of the Bhattacaryya criterion, CB, for individual features to separate all preterm and term EHG records of the TPEHG

DB.

https://doi.org/10.1371/journal.pone.0202125.g020
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Fig 21. Average values of the misclassification errors, MCE, obtained on the training and test sets of the TPEHG DB using the SFS

method.

https://doi.org/10.1371/journal.pone.0202125.g021

Table 9. Selected features and their ranks to classify between preterm and term, early and all EHG records of the TPEHG DB.

TPEHG DB

SFS (200 runs)

(QDA algorithm)

Early records (140 preterm / 143 term)

Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA
Signal S2 7 3 5 22 16 4 13 14 8 9 17

Signal S3 1 15 2 6 20 10 19 18 12 11 21

SFS (200 runs)

(QDA algorithm)

All records (256 preterm / 262 term)

Band B0 Band B1 Band B2 Band B3

SE MF SE MF PA SE MF PA SE MF PA
Signal S1 5 24 19 16 30 4 25 32 1 7 29

Signal S2 13 15 3 18 26 17 22 31 9 12 28

Signal S3 2 11 6 8 27 14 21 - 10 20 23

The first 11 selected features are in bold.

https://doi.org/10.1371/journal.pone.0202125.t009
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to the maternal heart rate. In fact, according to the literature, within the EHG signals the fol-

lowing components can be measured [37]: the electrical activity of uterine bursts, the maternal

respiration component, the maternal heart rate component with higher harmonics, and the

EHG signal artefacts. No other electrical activity, from human organs that could be measured

via EHG signals, was reported [37]. Another aspect is the influence of the maternal heart on

the uterus in the mechanical sense. In this study, we showed that the influence of the maternal

Table 10. Classification performance results obtained for preterm and term, early and all EHG records of the TPEHG DB.

TPEHG DB (preterm/term)

QDA Early records

(140 preterm / 143 term)

All records

(256 preterm / 262 term)

Signals S2, S3 Signals S1, S2, S3

[%] Se Sp CA AUC Se Sp CA AUC
5-folds 100 100 100 100 92.97 98.47 95.75 99.17

10-folds 100 100 100 100 94.14 98.47 96.33 99.44

https://doi.org/10.1371/journal.pone.0202125.t010

Fig 22. Classification accuracies for early and all EHG records of the TPEHG DB while the selected features were ranked according to the

Bhattacaryya criterion.

https://doi.org/10.1371/journal.pone.0202125.g022
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heart on the uterus in the mechanical sense is actually measurable via frequency domain analy-

sis of the TOCO signal in the frequency region above 1.0 Hz, what is an important finding.

Spectrograms (Fig 6) and power spectra of the TOCO signal (Figs 9, 12, 13 and 15, and

Table 1) for term nonlabor records of the TPEHGT DS clearly revealed the presence of a strong

spectral component in the frequency band B1 which is due to the maternal heart rate.

In terms of the peak amplitudes of the normalized power spectra in the frequency bands

B1, B2, and B3, the maternal heart’s influence seems to always be present in the EHG signals

recorded on the abdomen of pregnant (Figs 5–8, 10, 11, 13 and 15, S5 and S6 Figs, and

Table 1) and of non-pregnant women (Figs 14 and 15). The maternal heart’s influence is the

strongest in the EHG signal S1 (Figs 13 and 15). Moreover, the sample entropies of the TOCO

signal in the frequency band B1 for contraction and dummy intervals (Fig 16) are lower than

the sample entropies of the EHG signals S1, S2, and S3, indicating the higher regularity of the

TOCO signal in the frequency band B1, or the stronger influence of the maternal heart on

uterus in a mechanical sense for pregnant women. Regarding the TOCO signal, it would be

expected, for pregnant and non-pregnant women, that oscilations of the heart rate can be

detected on the abdomen because of mechanical transmission through several organs as well

as because of wave propagation through the vascular system. This is true for pregnant women.

The peak amplitudes of the normalized power spectra of the TOCO signal for contraction and

dummy intervals of pregnant women did reveal the influence of the maternal heart in the fre-

quency band B1 (Figs 6, 9, 12, 13 and 15, and Table 1). However, the results on the characteri-

zation of dummy intervals for non-pregnant women did not fully confirm these expectations.

The peak amplitudes of the normalized power spectra of non-pregnant dummy intervals of the

TOCO signal did not reveal any significant peak in the frequency bands B1, B2, or B3, where

the maternal heart rate with harmonics would be expected (Fig 14). The mechanical influence

does not seem to be present in the frequency band B1 (Fig 3 and S3 Fig). Moreover, the sample

entropy for non-pregnant dummy intervals of the TOCO signal in the frequency band B1 is

high (Fig 16), and much higher than the sample entropies of the TOCO signal for preterm and

Table 11. Comparison of classification performance results obtained for preterm and term, early and all EHG records of the TPEHG DB.

TPEHG DB (preterm /term)

Early records

Method Validation Se [%] Sp [%] CA [%] AUC [%]

Smrdel et al. [33] 5-folds 100 95 97 -

Ahmed et al. [36] 10-folds 94 99 96.5 99

The proposed method 5-folds 100 100 100 100

All records

Method Validation Se [%] Sp [%] CA [%] AUC [%]

Fergus et al. [29] 5-folds 97 90 - 95

Hussain et al. [30] 60% / 40% 89 91 90 -

Idowu et. al. [31] leave-one-out 97 86 - 94

Smrdel et al. [33] 5-folds 96 79 87 -

Ren et al. [34] 10-folds - - - 98.6

Fergus et al. [32] 5-folds 91 84 - 94

Ahmed et al. [36] 10-folds 92 98 94.9 99

Acharya et al. [35] 5-folds 91.39 97.33 94.47 -

10-folds 95.08 97.33 96.25 -

The proposed method 5-folds 92.97 98.47 95.75 99.17

10-folds 94.14 98.47 96.33 99.44

https://doi.org/10.1371/journal.pone.0202125.t011
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term, contraction and dummy, intervals of pregnant women, thus suggesting a very low regu-

larity of the TOCO signal in the frequency band B1, or a very weak presence of a physiologic

mechanism with periodic behavior for non-pregnant women. The maternal heart rate influ-

ence is present in the EHG and TOCO signals recorded on the abdomen for pregnant women,

but evidently does not seem to be present in the TOCO signal for non-pregnant women. Clas-

sification between non-pregnant dummy intervals, and preterm and term, contraction and

dummy intervals of pregnant women clearly confirmed these observations (Table 7). The clas-

sification performances (CA and AUC) were 100%, and close to 100%, for all classification

tasks, suggesting that the characteristics of EHG and TOCO signals of uterine records are

much different for non-pregnant and pregnant women. Moreover, if EHG signal S2 and

TOCO signal were used for classification, only one feature, the sample entropy of the TOCO

signal in the frequency band B2 or B3 (the presence or absence of the second or third har-

monic of the maternal heart rate) was needed (Table 6) and yielded classification performance

of 100% (Table 7). The latter result suggests that differences in the characteristics of uterine

records for non-pregnant and pregnant women are even more significant for the TOCO sig-

nal, or, that the influence of the maternal heart on the uterus is barely present in the mechani-

cal sense for non-pregnant women. In conclusion, the electro-mechanical influence of the

maternal heart for pregnant women is higher for term pregnancies than for preterm pregnan-

cies, and is the highest in the term nonlabor phase of pregnancy (Fig 13). The low level of this

electro-mechanical influence for pregnant women suggests the approaching labor, or the dan-

ger of preterm birth. The monitoring of frequency spectra and spectrograms of the EHG and

TOCO signals to look for the intensity of the influence of the maternal heart on the EHG and

TOCO signals may become part of clinical investigation during the preliminary assessment of

the danger of preterm birth.

A new biophysical marker for the assessment of the risk of preterm birth

Normalization of the power spectra yielded an important feature, peak amplitude of the nor-

malized power spectrum, PA, estimating relative proportions of peak amplitudes in different

frequency bands. The characterization of the PA for contraction and dummy intervals in the

frequency bands B1, B2, and B3, for the EHG and TOCO signals revealed a high level of the

PA in all signals only for term nonlabor group of records (Figs 7–13). It may be thought that

the rise of the PA in the frequency band B0 for the EHG signals occurs when labor approaches,

and this is the reason for the drop of the PA in the frequency band B1. However, neither peak

amplitude increase, nor peak median amplitude increase, for EHG signals were confirmed for

contractions in the frequency band below 1.0 Hz for women who delivered within seven days

[7, 17, 18, 55]. In our study, the boundary between nonlabor and labor groups was set at three

weeks. The level of the PA is low when delivery is close for preterm and term labor groups of

records, and it is also low in preterm nonlabor group of records while the delivery is still far off

(Fig 13 and Table 1). The level of the PA was the highest in the EHG signal S1, it was lower in

signal S3, and the lowest in signals S2 and TOCO, for both, contraction and dummy intervals

(Figs 13 and 15, and Table 1). Differences in the influence of the maternal heart were the most

prominent in the TOCO signal, and then in the EHG signal S2 (Table 1). The ratios between

the medians of the PA in the frequency band B1, in the case of term nonlabor versus preterm
nonlabor groups (Table 1), were the highest in the TOCO signal, and then in the EHG signal

S2, for both types of intervals. They were 8.2 (TOCO signal) and 2.533 (signal S2) for contrac-
tion intervals, and were 5.6 (TOCO signal) and 4.0 (signal S2) for dummy intervals. The EHG

signal S2 is a sign of electrical activity of the uterus along the vertical direction (the left elec-

trodes, Fig 1). Since tocodynamometer, measuring mechanical uterine pressure, is attached at
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the top of the fundus, the TOCO signal can be regarded as measuring mechanical activity of

the uterus also along the vertical direction. These are important observations. According to

Table 1 (see bracketed average values), the threshold for the PA in the frequency band B1 for

signals S2 and TOCO, to confirm term delivery, may be estimated as about 3% (signal S2) and

about 7% (TOCO signal) for contraction intervals, and about 6% (signal S2) and about 5%

(TOCO signal) for dummy intervals. Besides, the PA of the EHG signal S2, and of the TOCO

signal, in the frequency band B1 have an explainable physiological mechanism in the back-

ground, i.e., influence of the maternal heart. Moreover, the most significant individual feature

among all derived features for the classification between preterm and term, contraction and

dummy, intervals with respect to Bhattacaryya criterion again appear to be the PA in the fre-

quency bands B1, B2, and B3 (Fig 18 and Table 2). The achieved classification accuracies,

using dummy intervals, and the individual feature PA from the frequency band B1 of the EHG

signal S2, or of the TOCO signal, only, to classify between preterm nonlabor and term nonlabor

pregnancies (Table 3), were CA = 74.39%, or CA = 71.95%. If using dummy intervals, and the

individual feature PA from the frequency band B1 of the EHG signal S2 and of the TOCO sig-

nal, the achieved classification performances were the following: Se = 90%, Sp = 63%,

CA = 76.83%, and AUC = 82.70%. Specificity is low, however, sensitivity is high. In addition,

the most significant individual feature for the separation of the entire preterm and term EHG

records of the TPEHG DB, as for contraction and dummy intervals of the TPEHGT DS, again

appears to be the PA in the frequency bands B1, B2, and B3 (Fig 20 and Table 8) reflecting the

influence of the electrical activity of the maternal heart. We propose the value of the peak

amplitude of the normalized power spectrum of the EHG signal S2 estimating electrical propa-

gation along the uterus in the vertical direction, and of the TOCO signal estimating mechani-

cal activity of the uterus in the vertical direction, in the frequency band B1, describing the

electro-mechanical activity of the uterus due to the maternal heart, as a new biophysical

marker for the preliminary, or early, assessment of the risk of preterm birth. Moreover, the

EHG signal S2, or the TOCO signal, could be used individualy for the preliminary assessment

of the risk of preterm birth. Recently, according to literature, external tocography was thought

to be an unpromising approach for predicting the risk of preterm birth [10, 13]. However, this

study brings back the importance of external tocography in predicting preterm birth. The

TOCO signal carries important information about the mechanical influence of maternal heart

activity during pregnancy, as well as the TOCO signal proved to be equally useful for the vari-

ety of classification tasks in combinantion with the EHG signals as the EHG signals are alone

(Tables 5 and 7).

Classification performance of the proposed method with respect to

contraction and dummy intervals

Classifying between preterm and term uterine records is a very important factor for the effi-

cient predicting of preterm birth. Several studies addressed this task using uterine contrac-

tions. In classifying between preterm nonlabor (38 patients), preterm labor (13 patients), term
nonlabor (59 patients), and term labor (75 patients) groups (using peak frequency of the power

spectrum up to 1.0 Hz, burst duration, number of bursts per unit time, total burst activity, and

artificial neural network), the reported percentages of correct classifications were 71%, 92%,

86%, and 79%, respectively [18]. A recent study on evaluating the applicability of the EHG rec-

ords for the early detection and classification of preterm and term birth during pregnancy

included 20 women between the 24th and 28th week of pregnancy with threatened preterm
labor [56]. The women were divided into two groups: those delivering within seven days and

those delivering after more than seven days. To distinguish particular patterns for preterm and
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term EHG records, the analysis of the signals was performed using the combination of the

recurrence quantification analysis and principal component analysis. The reported classifica-

tion accuracy using the support vector machine classifier was 83.32%. Another study on evalu-

ating the applicability of the EHG records in diagnosing threatening premature labor included

three groups of pregnant women [16]. The first group was composed from 27 patients (from

27th to 40th week of pregnancy) with no symptoms of threatening preterm labor, the second

group from 27 patients (from 23rd to 36th week of pregnancy) with the symptoms of threaten-

ing preterm labor, and the third group from 14 patients in the first labor phase of full time

pregnancy. The classification performances in terms of AUC, using time domain (amplitude

and area under contraction curve) and frequency domain (contraction power, median and

peak frequency of power spectrum) features of uterine contractions derived from the EHG sig-

nals, and using support vector machine classifier, were 84.21% (groups one and two), 82.35%

(groups one and three), and 57.14% (groups two and three). These results indicated that the

properties of the contractions of the first labor phase group are similar to the properties of the

contractions of the threatening preterm labor group. This finding is in accordance with the

results of this study. Characteristics of contraction (and dummy) intervals are very similar for

term labor intervals, and both, nonlabor and labor preterm intervals, but not for term nonlabor

intervals. In our study, using the TPEHGT DS, we primarily addressed the problem of classify-

ing between preterm and term uterine records using contraction and dummy intervals, as is the

main objective of researchers when using the publicly available TPEHG DB database for the

task of classifying between the entire preterm and term EHG records. The performance results

achieved in classifying preterm and term contraction intervals of the TPEHGT DS, using the

QDA classifier, and using signals S2 and S3, or, signals S2 and TOCO, in terms of AUC, were

94.04% (Table 5A), or, 95.65% (Table 5B), respectively. If using dummy intervals instead, for

the same classification tasks, the performances were again quite comparable, and slightly

higher on average. The performances obtained in the classification of preterm versus term
dummy intervals, and using signals S2 and S3, or, signals S2 and TOCO, in terms of AUC,

were 95.85% (Table 5A), or, 95.56% (Table 5B), respectively.

Moreover, several excellent studies addressed the problem of classifying between pregnancy

(nonlabor) and labor uterine EHG records. Using uterine contractions of the EHG records,

and the frequency band of 0.34-1.0 Hz, the reported performance in predicting preterm deliv-

ery within seven days (using peak frequency of the power spectrum and propagation velocity),

in terms of AUC was 96% [10]. Considering the use of uterine contractions of EHG records,

and the frequency band spreading below and above 1.0 Hz, examples of the highest reported

performances in classifying between pregnancy and labor contractions in terms of correct clas-

sification were 88.72% (using Lyapunov exponent, variance entropy, wavelets related features,

the QDA classifier, and 133 pregnancy and 133 labor contractions) [20]; in terms of AUC were

85% (using non-linear correlation coefficient, 174/115 pregnancy/labor contractions) [25],

84.2% (using time reversibility, 174/115 pregnancy/labor contractions) [21], 99% (using time

reversibility, 30/30 pregnancy/labor contractions) [22]; and in terms of CAwere 88.00% [26]

(using intrinsic mode functions and the EMD method, and 150/150 pregnancy/labor contrac-

tions [57]). The performances obtained in this study (Table 5) in classification of labor versus

nonlabor contraction intervals are quite comparable. Classification performances using the

QDA classifier, and signals S2 and S3, or signals S2 and TOCO, in terms of AUC, were 87.79%

(Table 5C), or 96.14% (Table 5D), respectively. If using dummy intervals, the classification per-

formances obtained are again quite comparable, and slightly higher on average than those

using contraction intervals. The classification performances in terms of AUC for signals S2 and

S3, or signals S2 and TOCO, were 95.02% (Table 5C), or 94.61% (Table 5D), respectively.

However, it is difficult to expose the best features, or the best feature selection method, or the
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highest classification performance, or the best performing classifier, or to compare the perfor-

mances obtained, since the research groups (considering the classification of pregnancy and

labor contraction intervals) developed and evaluated their methods using their own datasets,

and the number of contraction intervals per dataset differed.

Dummy intervals, and the features obtained from the entire frequency spectrum available,

up to 5.0 Hz, appear to be as suitable for the classification between preterm and term, and

between nonlabor and labor, uterine records, as are contraction intervals. Even though dummy
intervals are not suitable for use with other tehniques related to contraction intervals, like EHG

propagation analysis [9] or EHG source localization [58], the results presented in this study

suggest a novel and simple clinical technique, not necessarily to look for contraction intervals,

but using dummy intervals for early assessment of the risk of preterm birth.

Classification performance of the proposed method with respect to entire

EHG records

When comparing the classification performances of different methods, it is very important

that the methods are evaluated using the same reference database and all available records of

the reference database, and using the same performance measures. Table 11 summarizes the

classification performances of published methods to classify between entire preterm and term
EHG records that were evaluated using all available EHG records of publicly available TPEHG

DB. The bank of four-pole band-pass Butterworth filters of the proposed method for predict-

ing preterm birth (Fig 4) decomposing each signal into a set of subspaces of the arbitrary

selected bandwidths proved to be suitable for the task of feature extraction and classification,

not only between preterm and term, contraction and dummy intervals of the TPEHGT DS, but

also between the entire preterm and term, early and all records of the TPEHG DB. In compari-

son to the use of a single frequency band such as 0.34-1.0 Hz [29], or 0.3-3.0 Hz and MMFE

[36], and in comparison to the use of multifrequency band decomposition approaches such as

the EMD method [34, 35], or wavelets [35], the proposed method yielded the classification

accuracy of 100% for early records, and quite comparable and slightly higher classification per-

formance, CA = 96.33%, AUC = 99.44%, for all records of the TPEHG DB (Table 11). Sharp

cut-offs and high attenuation in the stopbands appear to be important characteristics to sepa-

rate frequency bands when the signals have non-uniform spectral content due to physiological

mechanisms residing in separate frequency bands, as in the case of EHG records. Activity due

to contractions is expected in the frequency band B0 during contraction intervals, while the

activity of the maternal heart with its harmonics is expected in the frequency bands B1, B2,

and B3 throughout the records. (Recall that the entire EHG records of the TPEHG DB are

actually compositions of contraction and dummy intervals). The EMD method does not pro-

vide separate spectra bands of its intrinsic mode functions. Wavelets do not necessarily provide

sharp cut-off and high attenuation in the stopbands with minimum overlaps of neighbouring

frequency bands, nor do the set of subspaces provide arbitrary widths of the neighbouring fre-

quency bands.

Advantages of selected features

Another advantage of the proposed method to predict preterm birth lies in the features being

extracted from each strictly separated frequency band. The features are capable of adequately

estimating the presence (sample entropies), position (median frequencies), and intensity (peak

amplitudes of the normalized power spectrum) of the physiological mechanisms residing in

separate frequency bands. The most frequently selected features, and those with the highest

rank using the SFS and frequency-based feature-aggregation and feature-selection procedure,
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for any of the classification task of this study, were the sample entropies (Tables 4, 6, and 9),

followed by the median frequencies. Considering classification between preterm and term,

labor and nonlabor, contraction and dummy intervals, the most significant features (Table 4)

appear to be the sample entropies of the EHG signal S2 from the frequency bands B2 and B3

(the second and third harmonic of the maternal heart rate). Considering classification between

non-pregnant dummy intervals, and preterm and term, contraction and dummy intervals, the

most significant features (Table 6) again appear to be the sample entropies of the EHG signal

S2 from the frequency bands B2 and B3, and from the TOCO signal in the frequency band B2.

This result suggests that the presence of the second and third harmonic of the maternal heart

rate is very important indicator for efficient differentiating between preterm and term deliver-

ies. Even though the peak amplitudes of the normalized power spectra showed the highest

individual classification ability, they were selected less frequently (Tables 4 and 9) or not at all

(Table 6). The new proposed method for predicting preterm birth can become a novel clinical

application. The method involves the analysis of uterine records containing EHG signals, or,

EHG signals and the TOCO signal. Entire records may be processed fully automatically, or

semi-automatically, if the phase of annotating contraction or dummy intervals is involved. In

any case, it is suitable to assess the frequency content of signals using time-frequency domain

visualizations using spectrograms of signals, with special attention on the frequency bands B1,

B2, and B3 to quickly estimate the risk of preterm birth. Moreover, the proposed method

yielded the classification accuracy of 100% for early records of the TPEHG DB (Table 11). This

result suggests that the proposed method is suitable for predicting preterm birth already very

early during pregnancy, i.e., around 23rd week of pregnancy. The highest possible classifica-

tion accuracy was likely obtained due to the selected features, which directly estimate the pres-

ence and intensity of physiological mechanisms residing in strictly separated frequency bands.

Another argument why the proposed method is suitable for predicting preterm birth very

early during pregnancy lies in the features being extracted from frequency bands above 1.0 Hz,

thus primarily estimating the influence of the maternal heart on the uterus. Since the features

extracted from dummy intervals appear to be equally important for the classification between

preterm and term records, as are the same features extracted from contraction intervals, the

proposed method is suitable for clinical use very early during pregnancy, around 23rd week of

pregnancy, when the contractions may or may not be present.

Electrical activity of cervix

The cervix plays important role during pregnancy. The first stage of labour is the slow opening

of the cervix, which happens with regular contractions of the uterus. When the cervix is fully

opened (dilated), delivery follows. Cervical ripening starts early in pregnancy, in mid-gesta-

tion, with a process called softening [55]. Softening is followed by effacement and finally the

dilation of the cervix. Ripening is required for the normal progression of labor. Cervical ripe-

ness is quantified and scored according to the Bishop scoring system [59]. Unfortunately, our

uterine records did not contain accompanying information about the cervix or Bishop score.

The electrical activity of the cervix is another important aspect. A previous EMG study

showed that in humans the smooth muscles in the cervix act independently of those in the

uterine corpus [38]. A study measuring EMG activity from the cervix reported the presence of

a significant background level of electrical activity [60]. The study compared the cervical EMG

activity in five women from induction through the latent phase of labour and into the active

phase. During the latent phase (e.g., cervical dilation of 3 cm and cervical length of 1 cm), a sig-

nificant background level of electrical activity was present between the increases in EMG activ-

ity due to bursts of cervical contractions in all cases. The amount of this background electrical
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activity was reduced with cervical ripening during the active phase of labor (e.g., cervical dila-

tion of 4 cm and fully effaced) in all cases. Since the sampling frequency was 5 samples per sec-

ond, and the frequency content of bursts of cervical contractions is below 1.0 Hz, this

background electrical activity was likely due to the maternal ECG. This finding is in accor-

dance with the results of this study. In term nonlabor case the maternal heart activity is present,

while it is low or barely present in term labor case, and in both, nonlabor and labor, preterm
cases. Cervical effacement and dilation could be assessed by estimating the level of normalized

peak amplitude of the power spectra of the EHG and TOCO signals in the frequency bands B1,

B2, and B3. A high level of this activity suggests nonlabor phase. A drop in this activity suggests

labor phase, or the danger of preterm birth.

Electro-mechanical activity of the uterus during dummy intervals

The modeling of electro-mechanical activity of the uterus is currently limited to uterine con-

tractions. Several excellent studies connected to EHG propagation analysis [9], EHG source

localization [58], and modeling of pregnancy contractions [61] exist.

Here we present an attempt to describe the electro-mechanical activity of a pregnant uterus

within dummy intervals, out of contractions. Maternal heart activity, and the response of the

uterus, can be described as an electrical pulse train (or waves) led into a system with non-linear

transfer characteristic.

The immediate question is what properties of the uterus could cause the influence of the

maternal heart rate in the electro-mechanical sense to be more or less measurable via the EHG

and TOCO signals during pregnancy. We can look for the answer in those properties of uterus

that change while the pregnancy progresses. There seems to be two candidates: the propaga-

tion velocity of the electrical potentials as they propagate over the uterine muscle, and the

geometry and shape of the uterus and cervix (also responsible for higher harmonics). As the

delivery approaches, the increased excitability of the uterine cells and increased connectivity

among the cells result in the increased propagation velocity of electrical potentials [62]. It was

shown that the change in propagation velocity does not appear earlier than seven days prior to

delivery [10]. This study reported the propagation velocities of 11.11 ± 5.13 cm/sec and

11.31 ± 2.89 cm/sec for preterm and term nonlabor groups, and 52.56 ± 33.94 cm/sec and

31.25 ± 14.91 cm/sec for preterm and term labor groups of pregnant women, while the bound-

ary between nonlabor and labor groups was set at seven days. The propagation velocities are

practically equal for preterm and term nonlabor groups of records recorded seven or more

days prior to delivery. In our study, the boundary between the nonlabor and labor groups of

records of the TPEHGT DS was set at three weeks. This boundary resulted in 24 dummy labor

intervals, i.e. 12 dummy intervals in preterm labor group and another 12 dummy intervals in

term labor group. Of these 24 dummy intervals, only one interval relates to a pregnancy (record

tpehgt_p011) for which the delivery appeared within one week. Therefore, we can assume that

the propagation velocity for the remaining 23 dummy labor intervals is approximately equal to

the propagation velocity of dummy intervals of preterm and term nonlabor groups of records.

For these reasons, the propagation velocity could be excluded as a property causing changes in

the influence of the maternal heart. Below, we consider the geometry and shape of the uterus

and cervix only.

While the cervix is unripe and rigid, the uterus may be thought of as a closed womb with a

discontinuity (cervix). Such a system responds with harmonics. Maternal ECG activity is

strong, of the order of about 1 mV, while the EHG activity is of the order of about 50 μV. Elec-

trical pulses (or waves) of maternal heart activity, i.e. the electrical activity in the frequency

band B1, propagate along the uterine muscle. Due to the closed womb with discontinuity the
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waves are reflected back, causing interference with themselves, and higher harmonics in the

frequency bands B2 and B3 appear. Interference is a characteristic of waves of all types [63]. (It

is beyond the scope of this study to discuss the role and intensity of each higher harmonic).

The TOCO signal is a sign of mechanical activity. In the frequency band B1, it carries informa-

tion about the “vibrating” of the uterus in the vertical direction due to maternal heart activity.

The presence of the electro-mechanical activity of the uterus due to the maternal heart in the

frequency band B1, with higher harmonics in the frequency bands B2 and B3, was shown in

this study for the EHG signals S1, S2, and S3, and for the TOCO signal in the frequency band

B1 (Figs 6, 10–13, S6 Fig, and Table 1). The intensity of the maternal heart’s influence on the

EHG and TOCO is the most prominent in term nonlabor phase. Due to the strong influence

of maternal heart activity, the phase with a closed womb may be called the interference phase of

pregnancy. While the cervix is unripe and rigid, maternal ECG activity is measurable via the

EHG and TOCO.

While the pregnancy progresses the uterus is growing. With the approaching labor during

the term labor phase, the intensity of the maternal heart’s influence on the EHG and TOCO

diminishes together with harmonics, while during the preterm nonlabor and labor phases the

intensity remains low throughout, or is barely present, as shown in this study (Figs 2, 5, 10–13,

S5 Fig, and Table 1). During the ripening, the cervix effaces and slowly dilates. It means that

the womb is opened. The waves caused by maternal heart activity diffract through the hole

made by the effaced and dilated cervix. Diffraction is a characteristic of waves of all types [63].

In this phase, the electro-mechanical activity in the frequency bands B1, B2, and B3 dimin-

ishes. The maternal heart’s influence on the EHG and TOCO is lower in all signals. Due to the

diminished influence of the maternal heart activity, the phase with an opened womb may be

called the diffraction phase of pregnancy. In this phase, the maternal heart’s influence on the

EHG and TOCO remains the highest in the EHG signal S1, it is lower in signal S3, and the low-

est in signals S2 and TOCO for preterm nonlabor and labor phases and for term labor phase

(Fig 13 and Table 1). In the sense of mechanical information from the TOCO signal in the fre-

quency band B1, the uterus is not “vibrating” any more. Since the EHG signal S2 (the left elec-

trodes, Fig 1) estimates electrical propagation along the uterus in the vertical direction, as well

as the TOCO signal estimates the intensity of mechanical activity of the uterus in the vertical

direction, the drop of the maternal heart’s influence on the EHG and TOCO is likely due to

the vertical diffraction of waves through the effaced and dilated cervix. Moreover, the EHG sig-

nals S1 (the top electrodes, Fig 1) and S3 (the bottom electrodes, Fig 1) estimate electrical prop-

agation along the uterus in the horizontal direction, therefore the maternal heart’s influence in

these two signals remains higher. Since the EHG signal S1 is recorded closer to the maternal

heart, while the signal S3 is recorded closer to the cervix, the maternal heart’s influence

remains the highest in the EHG signal S1. In conclusion, the drop in the influence of maternal

heart activity is likely due the effacement and slow dilation of the cervix, and other shape

changes of the cervix (shorter, and aligned with the birth canal) during the onset of labor, or

during the latent phase of labor, or even earlier. This phase of weak maternal heart influence

suggests the approaching labor phase, or the risk of preterm birth.

Conclusion

The main purposes of this study were quantitative characterization of the uterine records of

the TPEHGT DS, and the development and testing of a new method for predicting preterm

birth. The innovations brought are: the newly developed TPEHGT DS; the establishment of a

new biophysical marker for the preliminary assessment of the danger of preterm birth; confir-

mation of the hypothesis that the frequency region of uterine records above 1.0 Hz containing
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frequency components due to the influence of the maternal heart provides important features

for efficient preterm delivery prediction; and the confirmation of the hypothesis that the

dummy intervals are equally or even more important for predicting preterm birth than are the

contraction intervals, thus suggesting a novel and simple clinical technique, rather than it

being necessary to look for the contraction intervals. The most important contribution

brought by this study is the improved method for predicting preterm birth. The method tested

on the publicly available TPEHG DB outperformed all other currently existing methods. The

method is also suitable for clinical use very early in pregnancy, around the 23rd week, when

contractions may or may not be present.

Until now, other methods did not view the maternal ECG as something that needed to be

considered. However, in this paper we showed that the influence of the maternal heart on the

uterus in electrical and mechanical sense is an important physiological mechanism, and plays

a very important role during pregnancy, and during the diagnosis of preterm birth. The char-

acterization and classification results showed high correlation between preterm or term birth

and the intensity of the influence of the maternal heart on the uterus. We believe that the find-

ings described in this study will yield new studies, including our own, exploring the further

understanding and modelling of the physiological mechanisms of the uterus that are involved

during pregnancy, and their interference.

In the future, we will make efforts to provide a web server for the method proposed in this

paper. In addition, we plan to develop a new, larger database that will contain the TPEHGT

DS dataset, TPEHG DB database, and many new uterine records (EHG signals and TOCO sig-

nal), recorded twice given pregnancy (around 23rd and around 31st week of pregnancy), with

spontaneous (preterm and term), induced, and cesarean section deliveries. This database will

allow many new studies connected to the further characterization of uterine records and fur-

ther development of the advanced methods for the efficient prediction of preterm birth.

Supporting information

S1 Fig. Normalized power spectra of contraction intervals of signal S1 of the records of the

TPEHGT DS.

(TIF)

S2 Fig. Normalized power spectra of dummy intervals of signal S1 of the records of the

TPEHGT DS.

(TIF)

S3 Fig. Normalized power spectra of signals S1, S2, S3, and TOCO, of the ninth non-preg-
nant dummy interval of the record tpehgt_n002 from Fig 3.

(TIF)

S4 Fig. The values of the two-sample t-test (p values), and of the Bhattacaryya criterion,

CB, with its ranks per group of signals, to separate labor and nonlabor, contraction and

dummy intervals of the TPEHGT DS. Those p values�1−3 and ranks of the first 11 features

according to CB per group of signals are in bold.

(TIF)

S5 Fig. The EHG signals and their spectrograms of the record tpehg1526 (preterm, recorded

early in the 25th week, delivery in the 30th week) of the TPEHG DB. From top to bottom:

EHG signal S2, spectrogram (0.0-5.0 Hz) of EHG signal S2, spectrogram (0.0-5.0 Hz) of EHG

signal S3, EHG signal S3.

(TIF)
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S6 Fig. The EHG signals and their spectrograms of the record tpehg949 (term, recorded

early in the 25th week, delivery in the 39th week) of the TPEHG DB. From top to bottom:

EHG signal S2, spectrogram (0.0-5.0 Hz) of EHG signal S2, spectrogram (0.0-5.0 Hz) of EHG

signal S3, EHG signal S3.

(TIF)

S1 File. Filtered signals S1, S2, S3, and TOCO, of the ninth non-pregnant dummy interval

of the record tpehgt_n002 from Fig 3.

(TXT)

S2 File. Normalized power spectra of filtered signals S1, S2, S3, and TOCO, of the ninth

non-pregnant dummy interval of the record tpehgt_n002 from Fig 3.

(TXT)
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Validation: Franc Jager, Ksenija Geršak.
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