
WFDB tools

A Matlab interface to the WFDB library

Jonas Carlson

December 10, 2003

The most recent versions of the software described here may be freely down-
loaded from PhysioNet (http://www.physionet.org/). An HTML version of this
guide is available at http://www.physionet.org/physiotools/matlab/wfdb tools/.

Contents

Preface iii

1 Installing the WFDB tools wrappers 1
1.1 Preparation . 1
1.2 Installing WFDB tools in a user directory 2
1.3 Installing WFDB tools as a Matlab toolbox 2
1.4 The WFDB library and applications 2
1.5 Sample, signal, and annotator numbers 2

2 Using the WFDB tools library 3
2.1 Reading signals . 3
2.2 Reading annotations . 4
2.3 Creating an annotation file . 6
2.4 Creating a signal file . 7

3 WFDB tools library functions 11
3.1 Selecting Database Records . 11
3.2 Special Input Modes . 14
3.3 Reading and Writing Signals and Annotations 15
3.4 Non-Sequential Access to WFDB Files 17
3.5 Conversion Functions . 18
3.6 Calibration Functions . 21
3.7 Miscellaneous Functions . 22
3.8 Creating structures . 27

i

ii

Preface

The Waveform Database interface library (the WFDB library) is a package of
C-callable functions that provide clean and uniform access to digitized, anno-
tated signals stored in a variety of formats. These functions, although originally
designed for use with databases of electrocardiograms, are useful for dealing
with any similar collection of digitized signals, which may or may not be anno-
tated. The WFDB library has evolved to support the development of numerous
databases that include signals such as blood pressure, respiration, oxygen sat-
uration, EEG, as well as ECGs. Thus the WFDB library is considerably more
than an ECG database interface.

This guide documents WFDB tools, a set of Matlab functions that enables
the Matlab user to take full advantage of the WFDB library and explore or
create databases containing a wide variety of signals.

The WFDB tools functions are not self-contained; rather, they are ‘wrap-
pers’ for the WFDB library functions (i.e. the WFDB library must be installed
for the Matlab functions to work). The wrappers work much in the same way
as the WFDB library functions, and the effort is to keep them as true to their
counterparts as possible. The usual way to work in Matlab is to get all results
from one function, and therefore the wrappers may seem ‘low-level’ in compari-
son. Combining just a few of the wrappers in an m-file, however, would produce
the ‘high-level’ way of working in Matlab while keeping the full control of data
handling that can only be obtained from the ‘low-level’ C-like wrappers.

This guide includes several short tutorial examples that illustrate how to
read and write signals and annotations using these wrappers. It also contains
descriptions of all the wrapper functions available to the Matlab user. Note
that Matlab help files for all of the wrappers are included in the WFDB tools
package, so it is always possible within Matlab to use a command such as

help WFDB_sampfreq

to obtain information about how to use any of these wrappers.
The set of wrappers is nearly complete. WFDB library functions for which

no wrappers currently exist are wfdbinit, ungetann, sample, sample valid, se-
tannstr, setanndesc, setecgstr, calopen, getcal, putcal, newcal, flushcal, setmsheader,
setwfdb, setibsize, and setobsize.

iii

iv

Chapter 1

Installing the WFDB tools
wrappers

Important: the WFDB tools wrappers have been developed and tested with Mat-
lab R13. It is highly unlikely that they can be made to work with an older
version of Matlab. Initial development and testing was under Red Hat Linux
8.0, using WFDB library version 10.3.2; the wrappers have also been tested un-
der Red Hat Linux 9.0 and WFDB library version 10.3.11. More recently, they
have also been tested under MS-Windows XP, also with WFDB library version
10.3.11. It may be possible to recompile these wrappers and to use them with
Matlab R13 on other platforms such as Mac OS/X or Solaris, but doing so is
currently unsupported.

1.1 Preparation

Before installing the WFDB tools wrappers, install the WFDB Software Pack-
age (http://www.physionet.org/physiotools/wfdb.shtml), and verify that it is
working properly on your system.

Download the WFDB tools package (http://www.physionet.org/physiotools/-
matlab/WFDB tools.tar.gz) and unpack it using a command such as

tar xfvz WFDB_tools.tar.gz

This creates a directory named WFDB tools, which contains the wrapper source
files (src/*.c), help files (help/*.m), precompiled binary files (linux/*.mexglx,
for x86 GNU/Linux, and windows/*.dll, for MS-Windows), documentation (in
doc/), and tutorial examples (in examples/).

Follow the instructions given in the 00README file (in the top-level WFDB tools
directory) to install the WFDB tools on your system.

All functions have explanatory m-files available through Matlab’s help
function. In the case of toolbox installation (described below) a list of all func-
tions is found using help WFDB tools.

1

1.2 Installing WFDB tools in a user directory

The directory WFDB tools can be put anywhere. All Matlab programs must
then use the command addpath to make the directory available (it is probably
not a good idea to put other program files inside the WFDB tools directory).

1.3 Installing WFDB tools as a Matlab toolbox

With sufficient write privileges, it should be possible to install the WFDB tools
as a Matlab toolbox. It should then be put in the directory:

matlabroot/toolbox/WFDB tools
To make it available to Matlab, this directory must be added to pathdef.m
(in the toolbox/local directory) and, if the toolbox path cache is enabled, the
command rehash toolboxcache should be issued when Matlab is started.

1.4 The WFDB library and applications

The WFDB Programmer’s Guide (http://www.physionet.org/physiotools/wpg/),
which documents the C-language WFDB library, is recommended as a source
of additional information and examples. The WFDB Applications Guide
(http://www.physionet.org/physiotools/wag/) describes many stand-alone pro-
grams that use the WFDB library to read and write digitized signals and an-
notations. If the WFDB Software Package has been correctly installed, you can
run these programs from a terminal window or from within Matlab to perform
a wide variety of signal processing and analysis tasks.

1.5 Sample, signal, and annotator numbers

Several WFDB library functions, and most of the stand-alone WFDB applica-
tions, accept arguments that specify a specific sample within a digitized signal
(a sample number, a specific signal within a set of signals (a signal number, or
a specific set of annotations (an annotator number). The first sample number
in a signal has sample number 0, not 1; similarly, the first signal has signal
number 0, and the first annotator has annotator number 0. The WFDB tools
functions use the same zero-based sample, signal, and annotator numbers as
the WFDB library functions that they wrap. This point is a possible source
of confusion if you become accustomed to thinking of these numbers as array
indices (which, in C, is exactly what they are); it may be best to think of them
simply as identification numbers for the objects with which they are associated.

2

Chapter 2

Using the WFDB tools
library

Using simple examples, this chapter illustrates how to use the WFDB tools
wrappers to read and write signals and annotations. Additional information
about the wrappers in these examples, and about the other wrappers in the
library, can be found in the next chapter.

2.1 Reading signals

Assuming that the WFDB Software Package has been installed correctly, the
record “100s” should be available. Reading the first ten samples of this record
using Matlab would be done as:

>> S = WFDB_isigopen(’100s’)
S =
2x1 struct array with fields:

fname
desc
units
gain
initval
group
fmt
spf
bsize
adcres
adczero
baseline
nsamp
cksum

3

>> DATA = WFDB_getvec(length(S), 10)
DATA =

995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
1000 1008
997 1008

The first command, S = WFDB isigopen(’100s’), reads the header file of
record 100s and returns the information in a structure (S, in this case). The
length of S equals the number of signals in the data file. The fields of S con-
tain the signal settings. To access, for example, the gain of signal 0 and the
description of signal 1, use the commands:

>> S(1).gain
ans =

200
>> S(2).desc
ans =
V5

(Remember: the first signal is signal 0, not signal 1! Its attributes are found in
the first structure, S(1). This will matter in later examples.)

The second command, DATA = WFDB getvec(length(S), 10), reads data
from the previously opened record. The two input parameters are the number
of signals (found as length(S)) and the desired number of samples (if omitted,
the whole record is read).

Finally, don’t forget

>> WFDB_wfdbquit

to close all open files.
An elaborated version of this example is provided in the examples directory

of the WFDB tools package (look for example1.m).

2.2 Reading annotations

This example illustrates how to open an annotation file, how to read annotations
from it, and how to translate them into their mnemonic and description strings.

First, we need to create an ‘Anninfo’ structure containing the annotator
name and mode of the annotation file:

4

>> A = WFDB_Anninfo(1)
A =

name: ’a1’
stat: ’WFDB_READ’

This might seem like a complicated way to go, but it reflects the way the un-
derlying WFDB library works. The record 100s has an annotator named atr,
so we need to change the name field of A before issuing the command to open
the file.

>> A.name = ’atr’
A =

name: ’atr’
stat: ’WFDB_READ’

>> WFDB_annopen(’100s’, A)

Now that the annotation file is open, we may read the first two annotations,
and take a closer look at the second one.

>> ANNOTATION = WFDB_getann(0, 2)
ANNOTATION =
2x1 struct array with fields:

time
anntyp
subtyp
chan
num
aux

>> ANNOTATION(2)
ans =

time: 77
anntyp: 1
subtyp: 0
chan: 0
num: 0
aux: ’’

The first argument of WFDB getann is the input annotator number. Since we
are reading only one annotation file, its annotator number is 0. (If we had
opened a second annotation file for reading, its annotator number would be 1,
etc.) Next, let’s see what the annotation type (the anntyp field) means, in
mnemonic and description:

>> WFDB_annstr(ANNOTATION(2).anntyp)
ans =
N
>> WFDB_anndesc(ANNOTATION(2).anntyp)
ans =
Normal beat

5

Finally,

>> WFDB_wfdbquit

An elaborated version of this example is provided in the examples directory
of the WFDB tools package (look for example2.m).

2.3 Creating an annotation file

In this example, we will create an annotation file that annotates the first two
P-waves of record 100s. These are located at (roughly) sample numbers 315 and
610. First, let’s find the annotation code for a P-wave:

>> WFDB_strann(’p’)
ans =

24

The description is:

>> WFDB_anndesc(24)
ans =
P-wave peak

Create the two annotations:

>> ANN = WFDB_Annotation(2)
ANN =
1x2 struct array with fields:

time
anntyp
subtyp
chan
num
aux

>> ANN(1).time = 315;
>> ANN(1).anntyp = 24;
>> ANN(1).aux = ’First P-wave’;
>> ANN(2).time = 610;
>> ANN(2).anntyp = 24;
>> ANN(2).aux = ’Second P-wave’;

Now create an annotator structure:

>> A = WFDB_Anninfo(1)
A =

name: ’a1’
stat: ’WFDB_READ’

>> A.name = ’p’;
>> A.stat = ’WFDB_WRITE’;

6

Create an empty annotation file to hold the annotations:

>> WFDB_annopen(’100s’, A)

Write the annotations:

>> WFDB_putann(0, ANN)

The first argument of WFDB putann is the output annotator number. Since
we are writing only one annotation file, its annotator number is 0.
Close all open files:

>> WFDB_wfdbquit

The new annotation file, 100s.p, will be located in Matlab’s current directory.
The result may be verified using WAVE (under Linux) or GTKWave (under MS-
Windows). These interactive viewers can be called from Matlab using:

>> !wave -r 100s -a p &

(substitute gtkwave for wave under MS-Windows).
(Remember the !-sign to call system functions from Matlab and the &-sign
to run WAVE as a background process; depending on your setup, using & may
cause an error, however, and you may need to run WAVE as a foreground process
without the final ’&’ in the command.)

An elaborated version of this example is provided in the examples directory
of the WFDB tools package (look for example3.m).

2.4 Creating a signal file

Creating an output signal file is made in three steps: create a signal information
structure, write the output signal data, and create the header file.

Assume we have data from three signals. We need to create a signal infor-
mation structure using:

>> S = WFDB_Siginfo(3)
S =
1x3 struct array with fields:

fname
desc
units
gain
initval
group
fmt
spf
bsize

7

adcres
adczero
baseline

Now these fields need to be filled with appropriate values. All of them have
default values to avoid producing errors, but it is unlikely that they will fit our
signals. For example, if signal 0 is the X-lead of a Frank-lead ECG, we may
want its description to be:

>> S(1).desc = ’Frank X’;

and so on for all other fields. (Remember: the first signal is signal 0; its at-
tributes are in S(1).) When done, we create an empty signal file in which to
write the data, using

>> WFDB_osigfopen(S)

We also need to supply the sampling frequency, for example 1 kHz:

>> WFDB_setsampfreq(1000);

and the basetime of the recording (i.e. the time of sample number 0). Assuming
the recording was started when my oldest daughter was born:

>> WFDB_setbasetime(’02:19:00 02/09/1999’)

(Dates used by WFDB tools are always in DD/MM/YYYY format; 02/09/1999
is 2 September, not February 9.)

Now we’re done with providing signal information and it is time to write the
actual signal data. This must be stored column-wise in a matrix (one signal
per column, one sample per row). If our data is stored in the variable DATA we
would use:

>> WFDB_putvec(DATA)

Finally, we need to record the information from S into a header (.hea) file
for later use. We need to choose a name for the new record we are creating
(avoiding the names of any existing records that we wish to read in the future);
if we choose test1 as the record name, we can create the header file by:

>> WFDB_newheader(’test1’)

These operations will create a header file, test1.hea, in the current directory,
and a signal file with the name previously specified in the fname fields of the
signal information structure, S. (Notice that WFDB newheader must always be
invoked after all of the samples have been written using WFDB putvec, because
the header file includes the number of samples in the record and checksums for
each signal, which are not known by the WFDB library until all of the samples
have been written.) As always, we use

8

>> WFDB_wfdbquit

to flush all pending output to the files, to close them, and to reset the internal
WFDB library variables.

As in the previous example, we can inspect our results using WAVE or
GTKWave:

>> !wave -r test1 &

An elaborated version of this example is provided in the examples directory
of the WFDB tools package (look for example4.m).

9

10

Chapter 3

WFDB tools library
functions

This chapter describes the functions that are provided by the WFDB tools
package. The arrangement of this chapter parallels that of chapter 2 of the
WFDB Programmer’s Guide, which describes the underlying WFDB library
functions that the WFDB tools functions use.

3.1 Selecting Database Records

These functions are used to open input and output signal and annotation files.

WFDB annopen

Usage: WFDB annopen(RECORD, ANNINFO)
Input: RECORD: (string) record name

ANNINFO: annotator information structure(s)
This function opens input and output annotation files for a selected record. If

RECORD begins with ‘+’, previously opened annotation files are left open, and
the record name is taken to be the remainder of RECORD after discarding the
‘+’. Otherwise, WFDB annopen closes any previously opened annotation files,
and takes all of RECORD as the record name. ANNINFO is a structure array
created by WFDB Anninfo (see section 3.8), with one array element for each
annotator to be opened. The caller must fill in the WFDB Anninfo structure
array to specify the names of the annotators, and to indicate which annotators
are to be read, and which are to be written. Input and output annotators may
be listed in any order in ANNINFO. Annotator numbers (for both input and
output annotators) are assigned in the order in which the annotators appear in
ANNINFO (the first annotator is number 0). For example, these instructions

>> a = WFDB_Anninfo(3);

11

>> a(1).name = ’a’; a(1).stat = ’WFDB_READ’;
>> a(2).name = ’b’; a(2).stat = ’WFDB_WRITE’;
>> a(3).name = ’c’; a(3).stat = ’WFDB_READ’;
>> WFDB_annopen(’100s’, a)

attempt to open three annotation files for record ‘100s’. Annotator ‘a’ becomes
input annotator 0, ‘b’ becomes output annotator 0, and ‘c’ becomes input an-
notator 1. Thus WFDB getann(1) (see section 3.3) will read all annotations
from annotator ‘c’, and WFDB putann(0, ANN) (see section 3.3) will write an
annotation for annotator ‘b’. Input annotation files will be found if they are
located in any of the directories in the WFDB path (see section 3.7). Output
annotators are created in the current directory (but note that, under Unix at
least, it is possible to specify annotator names such as ‘/here’ or ‘zzz/there’ or
even ‘../somewhere/else’)

See also: WFDB Anninfo (3.8), WFDB getann (3.3), WFDB putann (3.3)

WFDB isigopen

Usage: S = WFDB isigopen(RECORD)
Input: RECORD: (string) record name
Output: S: Siginfo structure(s)

This function opens input signal files for a selected record. If RECORD
begins with ‘+’, previously opened input signal files are left open, and the
record name is taken to be the remainder of RECORD after discarding the
‘+’. Otherwise, WFDB isigopen closes any previously opened input signal files,
and takes all of RECORD as the record name. S is an array of WFDB Siginfo
structures (see section 3.8 for an explanation of the fields), one for each signal
that was opened.

Calling WFDB isigopen also sets internal WFDB library variables that record
the base time and date, the length of the record, and the sampling and counter
frequencies, so that time conversion functions such as WFDB strtim (see section
3.5) that depend on these quantities will work properly.

WFDB isigopen will fill the structure array S with information about the
signals in the order in which signals are specified in the ‘hea’ file for the record.
Signal numbers begin with 0, so that fields in S(n) are the attributes of signal
(n-1). For example, the gain attributes of each signal in record ‘100s’ can be
read like this:

>> S = WFDB_isigopen(’100s’);
>> for ii = 1:length(S)
sprintf(’Signal %d, gain: %d’, ii-1, S(ii).gain)
end
ans =
Signal 0, gain: 200
ans =
Signal 1, gain: 200

12

An error message is produced if WFDB isigopen is unable to open any of
the signals listed in the header file, or if it cannot read the header file. It is not
considered an error if only some of the signals can be opened, however.

See also: WFDB Siginfo (3.8)

WFDB osigopen

Usage: S = WFDB osigopen(RECORD, NSIG);
Input: RECORD: (string) record name

NSIG: number of signals to open
Output: S: Siginfo structure(s)

This function opens output signal files. Use it only if signals are to be written
using WFDB putvec. The signal specifications, including the file names, are
read from the header file for a specified record and returned in the structure
array S. If RECORD begins with ‘+’, previously opened output signal files are
left open, and the record name is taken to be the remainder of RECORD after
discarding the ‘+’. Otherwise, osigopen closes any previously opened output
signal files, and takes all of RECORD as the record name. S is a WFDB Siginfo
structure array which, on return, will be filled with the signal specifications.

No more than NSIG (additional) output signals will be opened by WFDB -
osigopen, even if the header file contains specifications for more than NSIG
signals.

See also: WFDB Siginfo (3.8), WFDB putvec (3.3)

WFDB osigfopen

Usage: WFDB osigfopen(S);
Input: S: Siginfo structure(s)

This function opens output signals, as does WFDB osigopen, but the sig-
nal specifications, including the signal file names, are supplied by the caller to
WFDB osigfopen, rather than read from a header file as in WFDB osigopen.
Any previously open output signals are closed by WFDB osigfopen. S is a
WFDB Siginfo structure array (see section 3.8), with one element for each sig-
nal to be opened.

Before invoking WFDB osigfopen, the caller must fill in the fields of the
WFDB Siginfo structure S. To make a multiplexed signal file, specify the same
fname and group for each signal to be included. For ordinary (non-multiplexed)
signal files, specify a unique fname and group for each signal. See section 2.4:
Creating a signal file, for an illustration of the use of WFDB osigfopen.

See also: WFDB Siginfo (3.8)

WFDB wfdbinit

[Not yet implemented]

13

3.2 Special Input Modes

WFDB setifreq

Usage: WFDB setifreq(IFREQ);
Input: IFREQ: desired input sampling frequency

This function sets the current input sampling frequency (in samples per sec-
ond per signal). It should be invoked after opening the input signals (using
WFDB isigopen), and before using any of WFDB getvec, WFDB getann, WFDB -
putann, WFDB isigsettime, WFDB isgsettime, WFDB timstr, WFDB mstim-
str, or WFDB strtim. Note that the operation of WFDB getframe is unaffected
by WFDB setifreq.

Use WFDB setifreq when your application requires input samples at a spe-
cific frequency. After invoking WFDB setifreq, WFDB getvec resamples the dig-
itized signals from the input signals at the desired frequency (see section 3.3),
and all of the WFDB tools functions that accept or return times in sample in-
tervals automatically convert between the actual sampling intervals and those
corresponding to the desired frequency.

See also: WFDB getvec (3.3)

WFDB getifreq

Usage: FREQ = WFDB getifreq;
Input: FREQ: input sampling frequency

This function returns the current input sampling frequency (in samples per
second per signal), which is either the raw sampling frequency for the record
(as would be returned by WFDB sampfreq (see section 3.7), or the frequency
chosen using a previous invocation of WFDB setifreq.

See also: WFDB sampfreq (3.7), WFDB setifreq (3.2)

WFDB setgvmode

Usage: WFDB setgvmode(MODE);
Input: MODE: (string) either ’WFDB LOWRES’ (default) or ’WFDB HIGHRES’.

Set the mode used by WFDB getvec when reading a multi-frequency record.
If MODE is ’WFDB LOWRES’, WFDB getvec decimates oversampled signals.
If MODE is ’WFDB HIGHRES’, WFDB getvec interpolates signals sampled at
a lower frequency (repeating the last sample value).

Example: Signal 0 is sampled using 100 Hz and signal 1 using 200Hz. With
WFDB LOWRES, WFDB getvec returns samples using 100 Hz and signal 1 is
decimated from 200 Hz to 100 Hz. With WFDB HIGHRES, WFDB getvec
returns samples using 200 Hz and signal 0 is interpolated from 100 Hz to 200
Hz.

WFDB setgvmode also affects how annotations are read and written. If
WFDB setgvmode(’WFDB HIGHRES’) is invoked before using any of WFDB -
annopen, WFDB getvec, WFDB sampfreq, WFDB strtim, or WFDB timstr,

14

then all time data (including the time attributes of annotations read by WFDB -
getann or written by WFDB putann) visible to the application are in units of
the high-resolution sampling intervals. (Otherwise, time data are in units of
frame intervals.)

WFDB getspf

Usage: SPF = WFDB getspf;
Output: SPF: samples per frame

Unless the application is operating in WFDB HIGHRES mode (see section
3.2) and has then opened a multi-frequency record, this function returns 1.
For the case of a multi-frequency record being read in high resolution mode,
however, WFDB getspf returns the number of samples per signal per frame
(hence WFDB sampfreq/WFDB getspf is the number of frames per second).

3.3 Reading and Writing Signals and Annota-
tions

WFDB getvec

Usage: DATA = WFDB getvec(NSIG);
DATA = WFDB getvec(NSIG, NSAMP);
DATA = WFDB getvec(NSIG, NSAMP, TSTART);

Input: NSIG: number of signals
NSAMP: (optional) number of samples to read
TSTART: (optional) sample number of the first sample to read

Output: DATA: sample value(s)
This function reads samples from open input signals. Typically, we prepare

to use this function by

S = WFDB_isigopen(record);
NSIG = length(S);

to open the signals for a record of choice, and to determine NSIG, the number
of signals available in the record.

To read NSAMP samples of each signal, beginning at sample number TSTART:

DATA = WFDB_getvec(NSIG, NSAMP, TSTART);

The first sample of each signal has sample number 0 (not 1!).
To read the next NSAMP samples of each signal:

DATA = WFDB_getvec(NSIG, NSAMP);

This form returns up to NSAMP samples, from sample number T to sample number
T+NSAMP-1, where T is the input pointer (initially 0). The input pointer is
incremented by the number of samples that have been read, so that a subsequent

15

use of WFDB getvec returns the next NSAMP samples, etc. Use WFDB isigsettime
(see section 3.4) to set the input pointer directly.

If the record is not too long, read it all at once by:

DATA = WFDB_getvec(NSIG);

Note that recordings can be arbitrarily long and are often much larger than
available memory; also note that there may be a very long delay if an entire
record is read from a remote web server over a slow link.

WFDB getframe

Usage: DATA = WFDB getframe(NSPF);
DATA = WFDB getframe(NSPF, NF);
DATA = WFDB getframe(NSPF, NF, TSTART);

Input: NSPF: number of samples per frame
NF: (optional) number of frames to read
TSTART: (optional) frame number of the first frame to read

Output: DATA: sample value(s)
This function reads frames from open input signals. It is very similar to

WFDB getvec, and differs only when reading multifrequency records, which it
neither interpolates nor decimates; rather, it returns all sample values for each
data frame.

For example, if there are two signals, and signal 0 is sampled twice as fast
as signal 1, each frame contains two samples of signal 0 followed by one sample
of signal 1, so NSPF is 3 (two plus one). Suppose that we run:

{\tt DATA = WFDB_getframe(3, 5, 10)}

This loads five frames (frame numbers 10 through 14) into DATA, which will
be organized as:

[signal 0, sample 20] [signal 0, sample 21] [signal 1, sample 10]

[signal 0, sample 22] [signal 0, sample 23] [signal 1, sample 11]

[signal 0, sample 24] [signal 0, sample 25] [signal 1, sample 12]

[signal 0, sample 26] [signal 0, sample 27] [signal 1, sample 13]

[signal 0, sample 28] [signal 0, sample 29] [signal 1, sample 14]

WFDB putvec

Usage: WFDB putvec(DATA))
Input: DATA: sample(s) to be written

This function writes the specified sample(s) to output signal file(s). Within
DATA, signals are stored as columns. The number of columns must equal
the number of output signals as specified when calling WFDB osigfopen or
WFDB osigopen.

16

WFDB getann

Usage: ANNOTATION = WFDB getann(ANN NUM)
ANNOTATION = WFDB getann(ANN NUM, NANN)

Input: ANN NUM: annotator number (note: the first input annotator is annotator number 0)
NANN: (optional) number of annotations wanted

Output: ANNOTATION: Annotation structure(s)
This function reads the next NANN annotations from an open input annota-

tion file (designated by its annotator number, ANN NUM). If NANN is omitted,
it reads all annotations at once. Use WFDB iannsettime to set the file pointer.

See WFDB Annotation (section 3.8) for information on the contents of the
annotation structures.

WFDB ungetann

[Not yet implemented]

WFDB putann

Usage: WFDB putann(ANN NUM, ANNOTATION)
Input: ANN NUM: annotator number (note: the first output annotator is annotator number 0)

ANNOTATION: Annotation structure(s)
This function writes annotation(s) to an open output annotation file (desig-

nated by its annotator number, ANN NUM, and created using WFDB Anninfo
and WFDB annopen). Use WFDB Annotation to create the annotation struc-
tures, and fill in their data fields before invoking WFDB putann. If possible,
annotations should be written in canonical (time/chan) order (otherwise, the
annotations will be rewritten in order when WFDB wfdbquit is invoked).

3.4 Non-Sequential Access to WFDB Files

The next several functions permit random access to signal and annotation files.

WFDB isigsettime

Usage: WFDB isigsettime(TIME)
Input: TIME: sample number of the next sample to be read

Set input signal file pointer to sample number TIME. (The first sample is
sample 0.)

WFDB isgsettime

Usage: WFDB isgsettime(SGROUP, TIME)
Input: SGROUP: signal group number (note: the first signal group is group 0, etc.)

TIME: sample number of the next sample to be read

17

This function does the job of WFDB isigsettime, but only for the signal
group SGROUP. This function may be of use if more than one record is open
simultaneously.

WFDB iannsettime

Usage: WFDB iannsettime(TIME)
Input: TIME: minimum value for the time of the next annotation to be read

This function can be used to skip to a desired TIME in a set of annotations,
so that the next annotation to be read will be the first one occurring at or after
the specified TIME.

WFDB sample

[Not yet implemented]

WFDB sample valid

[Not yet implemented]

3.5 Conversion Functions

Functions in this section perform various useful conversions: between annotation
codes and printable strings, between times in sample intervals and printable
strings, between Julian dates and printable strings, and between ADC units
and physical units.

WFDB annstr

Usage: MNEMONIC = WFDB annstr(CODE);
Input: CODE: (scalar or vector) annotation code(s)
Output: MNEMONIC: (string, if CODE is scalar; otherwise, a cell of strings) annotation mnemonic(s)
WFDB annstr translates WFDB annotation code(s) to mnemonic(s).

WFDB anndesc

Usage: DESC = WFDB anndesc(CODE);
Input: CODE: (scalar or vector) annotation code(s)
Output: DESC: (string, if CODE is scalar; otherwise, a cell of strings) annotation description string(s)
WFDB anndesc translates WFDB annotation code(s) to description(s).

WFDB ecgstr

Usage: MNEMONIC = WFDB ecgstr(CODE);
Input: CODE: (scalar or vector) annotation code(s)
Output: MNEMONIC: (string, if CODE is scalar; otherwise, a cell of strings) annotation mnemonic(s)

18

WFDB ecgstr translates WFDB annotation code(s) to mnemonic(s). The
mnemonics shared by WFDB ecgstr and WFDB strecg can be modified indepen-
dently of those shared by WFDB annstr and WFDB strann, although both sets
of mnemonics are initially identical. For further details, see the description of
setannstr in the WFDB Programmer’s Guide.

WFDB strann

Usage: MNEMONIC = WFDB strann(CODE);
Input: MNEMONIC: (string, or cell of strings) annotation mnemonic(s)
Output: CODE: annotation code(s)

This function translates one or more ASCII strings (annotation mnemonics)
to numeric annotation codes.

WFDB strecg

Usage: MNEMONIC = WFDB strecg(CODE);
Input: MNEMONIC: (string, or cell of strings) annotation mnemonic(s)
Output: CODE: annotation code(s)

This function translates one or more ASCII strings (annotation mnemonics)
to numeric annotation codes.

WFDB setannstr

[Not yet implemented]

WFDB setanndesc

[Not yet implemented]

WFDB setecgstr

[Not yet implemented]

WFDB timstr

Usage: STR = WFDB timstr(T);
Input: T: (integer) time, in sample intervals
Output: STR: (string) time, in HH:MM:SS format

This function translates a time expressed in sample intervals into a string
indicating time in hours, minutes, and seconds. If T is positive, the string
indicates the time interval between sample number T and sample number 0;
otherwise, the time interval represented by -T is added to the base time (as
indicated in the ‘.hea’ file or previously set using WFDB setbasetime) and the
string indicates the time of day (and the date, if the base date has been set) at
the time of sample number (-T).

19

WFDB mstimstr

Usage: STR = WFDB mstimstr(T);
Input: T: (integer) time, in sample intervals
Output: STR: (string) time, in HH:MM:SS.sss format

This function is similar to WFDB timstr, except that the output string spec-
ifies the time with a resolution of 1 millisecond.

WFDB strtim

Usage: T = WFDB strtim(STR);
Input: STR: (string) time, in HH:MM:SS format
Output: T: (integer) time, in sample intervals
WFDB strtim converts an ASCII string to a time in units of sample intervals.

The string should be supplied in standard time format (see http://www.physio-
net.org/physiotools/wpg/strtim.htm).

WFDB datstr

Usage: STR = WFDB datstr(DATE);
Input: DATE: (integer) Julian date
Output: STR: (string) date, in DD/MM/YYYY format

This function converts the Julian date represented by DATE into an ASCII
string.

WFDB strdat

Usage: STR = WFDB strdat(DATE);
Input: STR: (string) date, in DD/MM/YYYY format
Output: DATE: (integer) Julian date

This function converts an ASCII string in DD/MM/YYYY format into a Ju-
lian date. If the string is improperly formatted, WFDB strdat returns zero. Note
that dates such as ’15/3/89’ refer to the first century A.D., not the twentieth
or twenty-first.

WFDB aduphys

Usage: PHYS = WFDB aduphys(SIG NUM, ADU);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)

ADU: signal values in A/D units (scalar or vector)
Output: PHYS: signal value(s) in physical units
WFDB aduphys converts signal value(s) in ADU from A/D units to physi-

cal units, based on the values of gain and baseline for input signal number
SIG NUM.

20

WFDB physadu

Usage: ADU = WFDB physadu(SIG NUM, PHYS);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)

PHYS: signal value(s) in physical units (scalar or vector)
Output: ADU: signal values in A/D units
WFDB physadu converts signal value(s) in PHYS from physical units to ADU

units, based on the values of gain and baseline for input signal number SIG NUM.

WFDB adumuv

Usage: MUV = WFDB adumuv(SIG NUM, ADU);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)

ADU: signal values in A/D units (scalar or vector)
Output: MUV: signal value(s) in microvolts
WFDB adumuv converts signal value(s) in ADU from A/D units to microvolts,

based on the values of gain and baseline for input signal number SIG NUM.

WFDB muvadu

Usage: ADU = WFDB muvadu(SIG NUM, MUV);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)

MUV: signal value(s) in microvolts (scalar or vector)
Output: ADU: signal values in A/D units
WFDB muvadu converts signal value(s) in MUV from microvolts to ADU units,

based on the values of gain and baseline for input signal number SIG NUM.

3.6 Calibration Functions

Functions in this section are used to determine specifications for calibration
pulses and customary scales for plotting signals. All of them make use of the
calibration list, which contains entries for various types of signals.

WFDB calopen

[Not yet implemented]

WFDB getcal

[Not yet implemented]

WFDB putcal

[Not yet implemented]

21

WFDB newcal

[Not yet implemented]

WFDB flushcal

[Not yet implemented]

3.7 Miscellaneous Functions

WFDB newheader

Usage: WFDB newheader(RECORD);
Input: RECORD: (string) record name

This function creates a ’.hea’ file. Use WFDB newheader just after you
have finished writing the signal files, but before calling WFDB wfdbquit. If
RECORD begins with ’+’, the ’+’ is discarded and the remainder of RECORD
is taken as the record name. If the record name is ’-’, the header file is written
to the standard output.

WFDB setheader

Usage: WFDB setheader(RECORD, S, NSIG)
Input: RECORD: (string) record name

S: Siginfo structure(s)
NSIG: number of signals

This function creates or recreates a header file for the specified RECORD,
based on the contents of the first NSIG members of S.

WFDB setmsheader

[Not yet implemented]

WFDB wfdbquit

Usage: WFDB wfdbquit;
This function closes all open database files and resets the following:

• the factors used for converting between samples, seconds, and counter
values (reset to 1), the base time (reset to 0, i.e., midnight), and the base
counter value (reset to 0); see WFDB mstimstr and WFDB timstr

• the parameters used for converting between adus and physical units (reset
to WFDB DEFGAIN adu/mV, a quantity defined in <wfdb/wfdb.h>); see
WFDB aduphys

• internal variables used to determine output signal specifications; see WFDB -
newheader

22

If any annotations have been written out-of-order, this function attempts to
run sortann (see the WFDB Applications Guide) as a subprocess to restore the
annotations to canonical order. If this cannot be done, it prints a warning mes-
sage indicating that the annotations are not in order, and providing instructions
for putting them in order.

WFDB iannclose

Usage: WFDB iannclose(ANN);
Input: ANN: annotator number (note: the first annotator is annotator number 0, etc.)

This function closes the annotation file associated with input annotator
ANN.

WFDB oannclose

Usage: WFDB oannclose(ANN);
Input: ANN: annotator number (note: the first annotator is annotator number 0, etc.)

This function closes the annotation file associated with output annotator
ANN.

WFDB wfdbquiet

Usage: WFDB wfdbquiet;
This function suppresses error reporting on the standard error output from

the WFDB library functions.

WFDB wfdbverbose

Usage: WFDB wfdbverbose;
This function restores normal error reporting after using WFDB wfdbquiet.

WFDB wfdberror

Usage: WFDB wfdberror;
This function returns a string containing the text of the most recent WFDB

library error message (or a string containing the WFDB library version number,
if there have been no errors).

WFDB sampfreq

Usage: FREQ = WFDB sampfreq;
FREQ = WFDB sampfreq(RECORD);

Input: RECORD: (string) record name
Output: FREQ: (real) sampling frequency

This function determines the sampling frequency (in Hz) for the record spec-
ified by its argument, if any. If RECORD is omitted, WFDB sampfreq returns
the currently defined sampling frequency, if any.

23

WFDB setsampfreq

Usage: WFDB setsampfreq(FREQ);
Input: FREQ: (real) sampling frequency

This function sets the sampling frequency, in sample intervals per second,
used by the time-conversion functions. Use setsampfreq before creating a new
‘hea’ file.

WFDB setbasetime

Usage: WFDB setbasetime;
WFDB setbasetime(BASETIME);

Input: BASETIME: (string) time of sample 0, in HH:MM:SS format; an optional base date in dd/mm/yyyy format can follow the time, separated from it by a space or tab character.
This function sets the base time (the time of day corresponding to sample

number 0), used by the time-conversion functions WFDB timstr and WFDB strtim.
Use WFDB setbasetime after defining the sampling frequency and before creat-
ing a header file. If called without an argument, the current date and time are
read from the system clock.

WFDB getcfreq

Usage: FREQ = WFDB getcfreq;
Output: FREQ: (real) counter frequency

This function returns the currently-defined counter frequency. The counter
frequency is set by the functions that read header files, or by WFDB setcfreq.
If the counter frequency has not been defined explicitly, WFDB getcfreq returns
the sampling frequency.

WFDB setcfreq

Usage: WFDB setcfreq(FREQ);
Input: FREQ: (real) counter frequency

This function sets the counter frequency, in Hz. Use WFDB setcfreq before
creating a ’.hea’ file. The effect of WFDB setcfreq is nullified by later invoking
any of the functions that read header files. If FREQ is zero or negative, the
counter frequency is treated as equivalent to the sampling frequency.

WFDB getbasecount

Usage: BASECOUNT = WFDB getbasecount;
Output: BASECOUNT: (real) base counter value

This function gets the base counter value (the counter value correspond-
ing to sample 0), which is set by the functions that read header files, or by
WFDB setbasecount. If the base counter value has not been set explicitly,
WFDB getbasecount returns zero.

24

WFDB setbasecount

Usage: WFDB setbasecount(BASECOUNT);
Input: BASECOUNT: (real) base counter value

This function sets the base counter value (the counter value corresponding to
sample number 0). Use WFDB setbasecount before creating a header file. The
effect of WFDB setbasecount is nullified by later invoking any of the functions
that read ’.hea’ files.

WFDB setwfdb

[Not yet implemented]

WFDB getwfdb

Usage: WFDB = WFDB getwfdb
Output: WFDB: (string) WFDB path

This function gets the current database path (the list of locations that the
WFDB library searches to find its input files).

WFDB wfdbfile

Usage: PATH = WFDB wfdbfile(NAME);
PATH = WFDB wfdbfile(TYPE, RECORD);

Input: NAME: (string) file name, e.g. ’100s.hea’
TYPE: (string) type of file, e.g. ’hea’ or ’atr’
RECORD: (string) record name, e.g. ’100s’

Output: PATH: (string) pathname of the file or URL
This function locates an existing WFDB file by searching the database path.

The file is specified by TYPE and RECORD, or by its NAME. On return, PATH
includes the appropriate component of the database path; since the database
path may include empty or non-absolute components, the string is not necessar-
ily an absolute pathname. PATH may also be a URL rather than a pathname.
If the file cannot be found, WFDB wfdbfile returns an empty string, ”.

WFDB wfdbflush

Usage: WFDB wfdbflush;
This function brings database output files up-to-date by forcing any output

annotations or samples that are buffered to be written to the output files.

WFDB getinfo

Usage: INFO = WFDB getinfo(RECORD);
Input: RECORD: (string) record name
Output: INFO: information string(s). If only one info string is found, INFO is a string; if two or more are found, INFO is a cell of strings. If there are no info strings, INFO is ” (the empty string).

This function reads information string(s) from a .hea file.

25

WFDB putinfo

Usage: WFDB putinfo(INFO);
Input: INFO: information string(s) (a string or a cell of strings; no string may be longer than 254 characters)
WFDB putinfo writes “info” string(s) into the ’.hea’ file that was created by

the most recent invocation of WFDB newheader. Two or more info strings may
be written to the same header by successive invocations of WFDB putinfo, or by
passing INFO as a cell of strings.

Note that WFDB newheader or WFDB setheader must be used before WFDB -
putinfo.

WFDB setibsize

[Not yet implemented]

WFDB setobsize

[Not yet implemented]

WFDB wfdbgetskew

Usage: SKEW = WFDB wfdbgetskew(SIG NUM);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)
Output: SKEW: skew, in frame intervals

This function gets the skew (as recorded in the ’.hea’ file, but in frame
intervals rather than in sample intervals) of the specified input signal, or 0 if
SIG NUM is not a valid input signal number. Since sample vectors returned by
WFDB getvec or WFDB getframe are already corrected for skew, WFDB wfdbget-
skew is useful primarily for programs that need to rewrite existing ’.hea’ files,
where it is necessary to preserve the previously recorded skews.

WFDB wfdbsetskew

Usage: WFDB wfdbsetskew(SIG NUM, SKEW);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)

SKEW: skew, in frame intervals
This function sets the specified skew (in frame intervals) to be recorded by

WFDB newheader or WFDB setheader for signal SIG NUM. WFDB wfdbsetskew
has no effect on the skew correction performed by WFDB getframe (or WFDB get-
vec), which is determined solely by the skews that were recorded in the header
file at the time the input signals were opened.

WFDB wfdbgetstart

Usage: PLENGTH = WFDB wfdbgetstart(SIG NUM);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)
Output: PLENGTH: prolog length, in bytes

26

This function gets the number of bytes in the prolog of the signal file that
contains the specified input signal, as recorded in the header file. Note that
WFDB wfdbgetstart does not determine the length of the prolog by inspection
of the signal file; it merely reports what has been determined by other means
and recorded in the ’.hea’ file. Since the prolog is not readable using the WFDB
library, and since functions such as WFDB isigopen and WFDB isigsettime take
the prolog into account when calculating byte offsets for WFDB getframe and
WFDB getvec, WFDB wfdbgetstart is useful primarily for programs that need
to rewrite existing ’.hea’ files, where it is necessary to preserve the previously
recorded byte offsets.

WFDB wfdbsetstart

Usage: PLENGTH = WFDB wfdbgetstart(SIG NUM);
Input: SIG NUM: signal number (note: the first signal is signal number 0, etc.)
Output: PLENGTH: prolog length, in bytes

This function sets the specified prolog length (bytes) to be recorded by
WFDB newheader or WFDB setheader for signal SIG NUM. WFDB wfdbsetstart
has no effect on the calculations of byte offsets within signal files as performed
by WFDB isigsettime, which are determined solely by the contents of the ’.hea’
file at the time the signals were opened.

3.8 Creating structures

The WFDB C functions work with different structures of information about sig-
nals, annotators, and annotations. Some of the functions in the previous sections
demand input of such structures. The following structure-creating functions are
not wrappers to any C functions; rather, they are Matlab m-files that cre-
ate structure arrays containing the required fields, with working (although not
correct in all cases) default values to avoid hard-to-find errors.

WFDB Anninfo

Usage: A = WFDB Anninfo(N);
Input: N: number of Anninfo structures to be created (number of annotation files to be opened)
Output: S: Anninfo structure(s)

Use this function to create Anninfo structures to be passed as input to
WFDB annopen. Anninfo structures have two fields:

name string annotator name; defaults set by WFDB Anninfo are a0, a1,
stat string input/output indicator (either ‘WFDB READ’ or ‘WFDB WRITE’); default is ‘WFDB READ’

The annotator name identifies a set of annotations; usually the name is that
of the creator of the annotations, either a program or a person. The annotator
name is the suffix of the annotation file’s name; for example, the annotation
file 100s.atr is a set of annotations for record 100s, with the annotator name
‘atr’. The application may change the name to any string containing letters,
numerals, and the ‘ ’ (underscore) character. Avoid names that are used as

27

a suffix for another file type. The application should change the stat string
for any output annotators to ‘WFDB WRITE’. Any changes must be made before
invoking WFDB annopen; later changes have no effect.

WFDB Siginfo

Usage: S = WFDB Siginfo(N);
Input: N: number of Siginfo structures to be created (number of signals to be written)
Output: S: Siginfo structure(s)

Use this function to create Siginfo structures to be passed as input to
WFDB osigfopen. Siginfo structures have twelve fields:

fname string the name of the signal file (may be shared among consecutively numbered signals); default: record.dat
desc string description of the signal (e.g., ‘ABP’, ‘Resp’); default: ‘Signal 0’, ‘Signal 1’, ...
units string physical units of the signal (e.g., ‘mmHg’, ‘%’); default: ’mV’
gain real number of A/D units per physical unit; default: 200
initval integer value of sample 0, in ADC units; default: 0
group integer group number (all signals sharing a signal file belong to the same group); default: 0
fmt integer storage format (one of those defined in WFDB FMT LIST, in <wfdb/wfdb.h>); default: 16
spf integer samples per frame; default: 1
bsize integer bytes per block (for use with tape and other block-structured storage media; 0 for ordinary files); default: 0
adcres integer ADC resolution in bits; default: 12
adczero integer sample value corresponding to the middle of the ADC range; default: 0
baseline real (possibly fictitious) sample value corresponding to an input of 0 in physical units; default: 0

The default values indicated above are filled in by WFDB Siginfo. Any
changes to these values must be made before invoking WFDB osigfopen; later
changes have no effect.

28

WFDB Annotation

Usage: ANN = WFDB Annotation(N);
Input: N: number of Annotation structures to be created
Output: S: Anninfo structure(s)

Use this function to create Annotation structures to be passed as input to
WFDB putann. Annotation structures have six fields:

time integer the sample number to which the annotation ‘points’; defaults set by WFDB Annotation are 1, 2, 3,
anntyp integer the annotation type, an integer between 1 and ACMAX (defined in ‘<wfdb/ecgcodes.h>’); default is 1
subtyp integer the annotation subtype, an integer between -128 and 127; default is 0
chan integer the annotation chan field, an integer between -128 and 127; default is 0
num integer the annotation num field, an integer between -128 and 127; default is 0
aux string the annotation aux string; default is an empty string

The subtyp, chan, and num fields do not have any preassigned meanings;
they may be used to record any small integers, or left at their default (0) values,
in which case they will not occupy space in the annotation file. Note that the
length of the aux string may not exceed 254 characters.

29

30

Support

If you believe you have found a bug, please send a report including:

• the name of the wrapper

• what input you used

• what result you got

• what result you expected

• what platform you used (CPU type, operating system name and version
number, Matlab version number, WFDB software package version num-
ber, WFDB tools version number)

Bug reports, questions, comments, and suggestions should be addressed to:

Email: Jonas dot Carlson at kard dot lu dot se

Fax: +46 46 157857

Address: (postal)
Jonas Carlson
Department of Cardiology
University Hospital
SE - 221 85 LUND
Sweden

31

	Preface
	Installing the WFDB_tools wrappers
	Preparation
	Installing WFDB_tools in a user directory
	Installing WFDB_tools as a Matlab toolbox
	The WFDB library and applications
	Sample, signal, and annotator numbers

	Using the WFDB_tools library
	Reading signals
	Reading annotations
	Creating an annotation file
	Creating a signal file

	WFDB_tools library functions
	Selecting Database Records
	Special Input Modes
	Reading and Writing Signals and Annotations
	Non-Sequential Access to WFDB Files
	Conversion Functions
	Calibration Functions
	Miscellaneous Functions
	Creating structures

