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Multiscale Entropy Analysis of Complex Physiologic Time Series

Madalena Costa,1,2 Ary L. Goldberger,1 and C.-K. Peng1

1Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
2Institute of Biophysics and Biomedical Engineering, Faculty of Science of the University of Lisbon,

Campo Grande, 1749-016 Lisbon, Portugal
(Received 26 March 2002; published 19 July 2002)
068102-1
There has been considerable interest in quantifying the complexity of physiologic time series, such as
heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes
associated with random outputs than for healthy dynamics exhibiting long-range correlations. This
paradox may be due to the fact that conventional algorithms fail to account for the multiple time scales
inherent in healthy physiologic dynamics. We introduce a method to calculate multiscale entropy (MSE)
for complex time series. We find that MSE robustly separates healthy and pathologic groups and con-
sistently yields higher values for simulated long-range correlated noise compared to uncorrelated noise.
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is a measure of its average uncertainty. Entropy is calcu-
lated by the equation:

For the analysis of such typically short, noisy time
series, Pincus [9] introduced the approximate entropy
Quantifying the ‘‘complexity’’ of physiologic signals in
health and disease has been the focus of considerable
attention [1–4]. Such metrics have potentially important
applications with respect to evaluating both dynamical
models of biologic control systems and bedside diagnos-
tics. For example, a wide class of disease states, as well as
aging, appear to degrade physiologic information content
and reduce the adaptive capacity of the individual. Loss of
complexity, therefore, has been proposed as a generic
feature of pathologic dynamics [1,3].

Traditional entropy-based algorithms quantify the regu-
larity (orderliness) of a time series. Entropy increases with
the degree of disorder and is maximum for completely
random systems. However, an increase in the entropy
may not always be associated with an increase in dynami-
cal complexity. For instance, a randomized time series
has higher entropy than the original time series, although
the process of generating surrogate data destroys correla-
tions and degrades the information content of the original
signal.

Diseased systems, when associated with the emergence
of more regular behavior, show reduced entropy values
compared to the dynamics of free-running healthy systems
[3]. However, certain pathologies, including cardiac ar-
rhythmias like atrial fibrillation, are associated with highly
erratic fluctuations with statistical properties resembling
uncorrelated noise [5–7]. Traditional algorithms will yield
an increase in entropy values for such noisy, pathologic
signals when compared to healthy dynamics showing cor-
related (1=f-type) properties, even though the latter repre-
sent more physiologically complex, adaptive states. This
inconsistency may be related to the fact that widely used
entropy measures are based on single-scale analysis and do
not take into account the complex temporal fluctuations
inherent in healthy physiologic control systems.

The entropy H�X� of a single discrete random variable X
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H�X� � �
X
xi2�

p�xi� logp�xi� : (1)

where X represents a random variable with set of values �
and probability mass function p�xi�.

For a time series representing the output of a stochastic
process, that is, an indexed sequence of n random vari-
ables, fXig � fX1; . . . ; Xng, with set of values �1; . . . ;�n,
respectively, the joint entropy is defined as

Hn � �
X

x12�1

� � �
X

xn2�n

p�x1; . . . ; xn� logp�x1; . . . ; xn� ;

(2)

where p�x1; . . . ; xn� is the joint probability for the n vari-
ables X1; . . . ; Xn.

The state of a system at a certain instant, Xn, is partially
determined by its history, X1; X2; . . . ; Xn�1. However, each
new state carries a certain amount of new information. The
mean rate of creation of information, also known as the
Kolmogorov-Sinai (KS) entropy, is a useful parameter to
characterize the system dynamics [8]. Considering that the
phase space of a system with D degrees of freedom is
partitioned into hypercubes of content "D and the state of
the system is measured at intervals of time �, the KS
entropy is defined as

HKS � lim
�!0

lim
"!0

lim
n!1

�Hn�1 �Hn�: (3)

Numerically, only entropies of finite order n can be
computed. As soon as n becomes large with respect to
the length of a given time series, the entropy Hn is under-
estimated and decays towards zero. Therefore, the KS
entropy for ‘‘real-world’’ time series of finite length cannot
usually be estimated with reasonable precision.
2002 The American Physical Society 068102-1



1 3 5 7 9 11 13 15 17 19 21
Scale Factor 

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

E
nt

ro
py

 M
ea

su
re

Analytic solutions
Numerical simulations

1/f noise

White noise

FIG. 1. MSE analysis of Gaussian distributed white noise
(mean zero, variance one) and 1=f noise. On the y axis, the
value of entropy (SampEn) for the coarse-grained time series is
plotted. The scale factor specifies the number of data points
averaged to obtain each element of the coarse-grained time
series. Symbols represent results of simulations for time series
of 3 104 points [12], and dotted lines indicate
analytic results. SampEn for coarse-grained white noise time
series, is analytically calculated by the expression
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�2=��
p ��e��1=2�x2�dx. � and erf

refer to the scale factor and to the error function, respectively. r
is defined in Refs. [4,9,12]. For 1=f noise time series, the
analytic value of SampEn is a constant.
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(ApEn) family of parameters, which have been widely
used in physiology and medicine [1]. Recently, a modified
algorithm, sample entropy (SampEn) [4], has been pro-
posed which has the advantage of being less dependent on
the time series length. Such algorithms, however, assign a
higher value of entropy to certain pathologic time series
that are presumed to represent less complex dynamics than
to time series derived from healthy function [3]. One
possible reason for obtaining these results may be the
fact that these measures are based on a single scale. Both
the KS entropy and the related ApEn parameters depend on
a function’s one step difference (e.g., Hn�1 �Hn) and
reflect the uncertainty of the next new point, given the
past history of the series. Therefore, such measures do
not account for features related to structure on scales
other than the shortest one.

Zhang [10,11] proposed a general approach to take into
account the multiple time scales in physical systems. His
measure, based on a weighted sum of scale dependent
entropies, does, in fact, yield higher values for correlated
noises compared to uncorrelated ones. However, since it is
based on Shannon’s definition of entropy, Zhang’s method
requires a large amount of almost noise-free data, in order
to map a signal to a discrete symbolic sequence with
sufficient statistical accuracy. Therefore, it presents ob-
vious limitations when applied to typical physiologic sig-
nals that vary continuously and have finite length.

Here we introduce a multiscale entropy technique appli-
cable to the analysis of the biologic time series. We study
simulated noises as well as human cardiac interbeat inter-
val time series, the latter representing the output of a major
physiologic control system.

Given a one-dimensional discrete time series, fx1; . . . ;
xi; . . . ; xNg, we construct consecutive coarse-grained time
series, f y���g, determined by the scale factor, �, according
to the equation: y���j � 1=�

Pj�
i��j�1���1 xi, 1 � j � N=�.

For scale one, the time series fy�1�g is simply the
original time series. The length of each coarse-grained
time series is equal to the length of the original time series
divided by the scale factor, �. Here we consider time series
with 3 104 points and coarse-grain them up to scale 20,
so that the shortest time series has 1500 points. We then
calculate an entropy measure (SampEn) for each coarse-
grained time series plotted as a function of the scale factor
� [12]. We call this procedure multiscale entropy (MSE)
analysis [13].

We first test the MSE method on simulated white and
1=f noises [14]. We find that for scale one, a higher value
of entropy is assigned to white noise time series in com-
parison with 1=f time series. However, while the value of
entropy for the coarse-grained 1=f series remains almost
constant for all scales, the value of entropy for the coarse-
grained white noise time series monotonically decreases,
such that for scales > 5, it becomes smaller than the
corresponding values for 1=f noise (Fig. 1). This result is
consistent with the fact that, unlike white noise, 1=f noise
068102-2
contains complex structures across multiple time scales
[10,11].

Next, we apply the MSE method to the analysis of
selected physiologic time series (Fig. 2). We compare the
time series of consecutive heartbeat intervals derived from
healthy subjects, patients with severe congestive heart
failure [15], and patients with the cardiac arrhythmia, atrial
fibrillation. In Fig. 3, we observe three different types of
behaviors: (1) The entropy measure for time series derived
from healthy subjects increases on small time scales and
then stabilizes to a constant value. (2) The entropy measure
for time series derived from subjects with congestive heart
failure, a life-threatening condition, markedly decreases on
small time scales and then gradually increases. (3) The
entropy measure for time series derived from subjects with
atrial fibrillation monotonically decreases, similar to white
noise. Of note, for scale one, atrial fibrillation time series
are assigned the highest value of entropy [17], and healthy
heartbeat time series are not distinguishable from those of
heart failure patients. The largest separation between heart
failure patients and healthy subjects is obtained for time
scale 5. At the highest scales, the entropy values for the
healthy heartbeat fluctuations are significantly higher than
those of both pathologic groups.

We also find that the asymptotic value of entropy may
not be sufficient to separate time series that represent the
output of different dynamical processes. As seen in Fig. 3,
for time scale 20, the value of the entropy measure for the
068102-2
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FIG. 3. MSE analysis of interbeat interval time series derived
from healthy subjects, subjects with congestive heart failure
(CHF), and subjects with atrial fibrillation (AF), as shown in
Fig. 2. Values are given as means � standard error [16]. Time
series were filtered to remove outlier points due to artifacts and
ventricular ectopic beats. The values of entropy depend on the
scale factor. For scale one, AF time series are assigned the
highest value of entropy, and the values corresponding to healthy
and CHF groups completely overlap. For larger scales, e.g., 20,
the entropy value for the coarse-grained time series derived from
healthy subjects is significantly higher than those for AF and
CHF. At this scale, AF and CHF groups become indistin-
guishable.

0 200 400 600 800 1000
Beat Number

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

In
te

rb
ea

t 
In

te
rv

al
 (

se
c) 0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1
(a)

(b)

(c)

FIG. 2. Representative heartbeat intervals time series from
(a) healthy individual (sinus rhythm), (b) subject with congestive
heart failure (sinus rhythm), and (c) subject with the cardiac
arrhythmia, atrial fibrillation.
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heart failure and atrial fibrillation time series is the same.
However, these time series represent the output of a very
different type of cardiac dynamics (Fig. 2). Therefore, not
only the specific values of the entropy measure but also
their dependence on resolution need to be taken into
account to better characterize a physiologic process.

We further test the MSE algorithm by comparing the
heartbeat time series from 20 healthy elderly subjects,
10 males and 10 females (mean age �SD, 69� 3 yr),
and 20 healthy young subjects, 10 males and 10 females
(mean age �SD, 32� 6 yr) (Fig. 4). We find that for all
time scales, a higher value of entropy is assigned to time
series from young subjects, consistent with the hypothesis
of loss of complexity with age [3]. Of note, the weakest
separation between the two groups occurs for scale one, the
only scale studied by traditional entropy metrics. The
strongest separation is obtained for time scale 5.

Finally, the MSE algorithm was tested on a set of
surrogate data obtained from the heart rate time series of
a healthy subject by simple randomization of its data
points. The MSE algorithm discriminated the two time
series and revealed that the randomized surrogate data
was less complex than the original physiologic data.
Furthermore, it assigned to the surrogate data set a behav-
ior qualitatively similar to the one already described for
white noise time series.

Our findings are of interest from the following perspec-
tives. The long-standing problem of deriving useful mea-
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sures of time series complexity is germane to analyzing
both the output of physical and biologic systems. In this
respect, the MSE method appears to yield a more mean-
ingful approach than conventional entropy measurements.
MSE is based on the simple observation that complex
physical and biologic systems generally exhibit dynamics
that are far from the extrema of perfect regularity and
complete randomness. Instead, complex dynamics typi-
cally reveal structure on multiple spatial and temporal
scales. These multiscale features, ignored by conventional
entropy calculations, are explicitly addressed in the MSE
algorithm.

The MSE algorithm yields consistent findings when
applied to assessing the complexity of both (a) simulated
correlated and uncorrelated noises and (b) the integrated
output of a major physiologic control system (cardiac
interbeat intervals) under healthy and pathologic condi-
tions. In particular, we find, in accord with Zhang [10],
that correlated (1=f� noise has a higher complexity level
than uncorrelated (white) noise when multiple time scales
are taken into account (Fig. 1). We also find that pathologic
dynamics associated with either increased regularity/de-
creased variability [Fig. 2(b)] or with increased variability
due to loss of correlation properties [Fig. 2(c)] are both
characterized by a reduction in complexity. This finding
is compatible with the unifying concept that physio-
logic complexity is fundamentally related to the adaptive
capacity of the organism, which requires integrative,
068102-3
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FIG. 4. MSE analysis of the cardiac interbeat time series
derived from healthy young subjects and healthy elderly sub-
jects. Values are given as means � standard error [16]. For all
time scales, the values of entropy for coarse-grained time series
obtained from elderly subjects are significantly (p < 0:005;
Student’s t-test) lower than those from young subjects. The
poorest separation between groups is obtained for scale one,
indicating the importance of calculating entropy over different
scales.
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multiscale functionality. In contrast, disease states (Fig. 3),
as well as aging (Fig. 4), may be defined by a sustained
breakdown of long-range correlations and loss of informa-
tion [18]. Finally, we note that the MSE method has
potential applications to studying a wide variety of other
physiologic and physical time series data.
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