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Abstract. We have compiled a comprehensive and open-source modular toolbox for calculating 20 
heart rate variability (HRV) metrics and other related variability indices, implemented in Matlab 21 
with evidence-based algorithms and output formats. Variability metrics hold promise as potential 22 
indicators for autonomic function, prediction of adverse cardiovascular outcomes, 23 
psychophysiological status, and general wellness. Although the investigation of HRV has been 24 
prevalent for several decades, the methods used for preprocessing, windowing, and choosing 25 
appropriate parameters lacks consensus among academic and clinical investigators. The 26 
functioning of our software, the PhysioNet Cardiovascular Signal Toolbox (this work), is compared 27 
with other widely used and referenced HRV toolboxes. Our findings demonstrate how differences 28 
in the methodology of HRV analysis can lead divergent results, a factor that might have contributed 29 
to the lack of repeatability of studies and clinical applicability of HRV metrics. Existing HRV 30 
toolboxes do not include standardized preprocessing, signal quality indices and abnormal rhythm 31 
detection and are therefore likely to lead to significant errors in the presence of moderate to high 32 
noise or arrhythmias. We therefore describe the inclusion of validated tools for performing 33 
preprocessing, signal quality, and arrhythmia detection. We also make recommendations for default 34 
values and reporting. 35 

 36 

Key Terms. Heart rate variability, toolbox validation, peak detection, physiological signal 37 

processing 38 
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1. Introduction 1 
Interest in heart rate variability (HRV) and signal processing of cardiovascular dynamics has seen a recent 2 
resurgence due to the increased availability of devices and wearables that record physiological signals. It 3 
has been widely reported that metrics which quantify cardiovascular dynamics can be used to estimate basal 4 
states and detect changes in the autonomic nervous system (Malik, 1996; Clifford, 2002; Pan et al., 2016) 5 
and consequently hold promise as tools that can aid in disease tracking, wellness promotion, and risk 6 
stratification. The non-invasive nature of HRV measurement makes it particularly attractive as a long-term 7 
health tracking tool, or component of a more comprehensive health monitoring framework.  8 

Despite its popularity in research and relatively long history, there is still much disagreement and ambiguity 9 
surrounding the methods by which researchers apply HRV signal processing. This issue limits meaningful 10 
comparisons between studies and scientific repeatability, especially when in-house, custom, non-public 11 
software are used. Unfortunately, few HRV programs are rigorously designed and tested with methods that 12 
are clear and open access. Additionally, of the open-source HRV programs available, many are poorly 13 
documented, no longer supported by their original authors, or have broken dependencies that require 14 

extensive troubleshooting. Regardless, no existing HRV software toolbox, to our knowledge, provides a 15 
comprehensive suite of validated tools. More specifically, such software should undergo a validation 16 
process in which the output is rigorously compared with expected values based on a standardized input; 17 
furthermore, it should be tested against other HRV tools for consistency.  18 

To address the issues of validation, standardization, and repeatability, we have developed a validated open-19 

source cardiovascular signal and HRV analysis toolbox. The software suite has been designed to accept a 20 
wide range of cardiovascular signals and analyze those signals with a variety of classic and modern signal 21 
processing methods. The toolbox includes many features not offered in other programs, including peak and 22 
pulse detection, signal quality analysis, rhythm detection, beat classification, standard HRV statistics, and 23 
more recent HRV metrics, such as phase rectified signal averaging (PRSA). The toolbox is written in the 24 
Matlab programming language and does not have any dependencies on external software or libraries. (A 25 
list of minimal default Matlab toolboxes are provided in Appendix A - the toolbox was designed to use the 26 
minimal number of dependencies and the most basic operators to future-proof the code base as much as 27 
possible.) The toolbox can process raw waveform data (such as electrocardiograms) as well as derived RR-28 
interval data. Although the toolbox was not designed to deal with file formats (to avoid specific 29 
dependencies), it does natively support MAT, CSV, or WFDB-compatible annotation formats without 30 
relying on PhysioNet’s WFDB libraries (or other libraries). If users wish to export results from the HRV 31 

Toolbox, a function is included that allows for standard WFDB compatible output annotation files or vanilla 32 
CSV output files. 33 

Preprocessing and data cleaning is an important aspect of signal processing that often is overlooked or 34 
poorly documented in HRV-related publications. The PhysioNet Cardiovascular Signal Toolbox described 35 
here employs several methods to prepare data for HRV estimation, including assessing signal quality and 36 

detecting arrhythmias, erroneous data, and noise. These segments of data, which must be excluded from 37 
HRV analysis, can then be systematically removed based on threshold settings selected by the user or 38 
recommended in previously validated studies. In particular, our toolbox contains one initialization (or 39 
header) file which lists all the options available, with typical default settings. In this way, a user may easily 40 
identify which settings need to be given considerable thought (all the ones listed) and provide this listing 41 
in a publication. This file fully defines all the parameter options to ensure a fully repeatable experiment.  42 
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The goal of this work is to advance the standardization of HRV and cardiovascular variability research and 1 
clinical applicability. This publication outlines the current HRV analysis tool landscape alongside our new 2 
suite of open-source tools contained within the PhysioNet Cardiovascular Signal Toolbox. We present the 3 
considerations necessary to invoke the use of these tools in a repeatable and standardized manner. The 4 
consequences of divergent approaches to HRV analysis are presented in a series of studies that 5 
systematically vary methodology and input data. Finally, we present a standard model by which HRV 6 
analysis packages may be judged in the future and a discussion of the recommendations by which HRV 7 
analysis should be conducted by researchers and clinicians alike. 8 

 9 

2. HRV Tool Landscape 10 
Publicly available tools for HRV analysis are scattered throughout the internet and have varying levels of 11 
sophistication. Here, we review a subset of the most popular toolboxes available and the HRV metrics that 12 
they generate. Perhaps the most used and trusted HRV toolbox is that written by Mietus and Moody, 13 
available from PhysioNet.org (Mietus and Goldberger, 2014). The PhysioNet HRV Toolkit is an open-14 

source package that is written in C and performs time domain and spectral HRV statistics. This toolbox has 15 
the unique feature of compatibility with the PhysioNet’s Waveform Database (WFDB) Software Library 16 
(also written in C). This allows the user to leverage PhysioNet’s many QRS detectors, data libraries, and 17 
processing and evaluation tools. However, installation is nontrivial and the default preprocessing and other 18 
variables associated with it are not well documented. Never-the-less, it is considered the standard in the 19 
field. The proprietary Kubios HRV software (Tarvainen et al., 2014) is another frequently used and cited 20 
HRV analysis tool. At the time of this publication, Kubios is available in both a no-cost ‘Standard’ version 21 
and a licensed ‘Premium’ version available for $329 per seat license. Both versions of the Kubios software 22 
offer an extensive user interface and the ability to process RR intervals. As with the PhysioNet HRV 23 
Toolkit, the ‘Premium’ version can also process ECG waveform data and perform a Lomb-Scargle 24 
Periodogram (Lomb, 1976; Press et al., 1992), both of which are essential functions, as we explain in this 25 
article. Running the Kubios HRV software is strictly through a proprietary user interface which does not 26 

support batching input data, and can therefore be time consuming for moderate sized datasets and unfeasible 27 
for large datasets. Moreover, the fact that users can set the many preprocessing parameters by hand, means 28 
the results may be unrepeatable (since humans are prone to errors when clicking buttons in a repeated 29 
manner, and the documentation of the exact parameters selected may not be fully recorded). Two less 30 
commonly referenced Matlab-based toolboxes available are Kaplan’s HRV toolbox (Kaplan and Staffin, 31 

Updated Feb 3 1998) and Vollmer’s HRV toolbox (Vollmer). Both these toolboxes are open-source and 32 

were written for Matlab. Additionally, Vollmer’s HRV toolbox employs a user interface, but does not 33 
require it.  34 

All of the aforementioned HRV toolboxes, including the PhysioNet Cardiovascular Signal Toolbox 35 
described in this publication, compute classic HRV metrics including the mean of RR intervals, the standard 36 
deviation of normal-to-normal (NN) RR intervals (SDNN), the square root of the mean squared differences 37 

of successive NN intervals (RMSSD), the proportion of interval differences of successive NN intervals 38 
greater than 50 ms (pNN50), or more generally the pNNx (where x is a variable between 5 and 100ms) the 39 
total power of the power spectral density across various frequency bands, and the ratio of low frequency to 40 
high frequency power. Additional HRV metrics are available in the various toolboxes per Table 1. See 41 
Clifford et al. (Clifford et al., 2006) for a detailed description of these statistics.  42 
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Table 1. Summary of Functionality of Various HRV Toolboxes. See section 3 for definition of HRV metrics 1 
Software 

Origin → 

 

Functionality 

PhysioNet 

HRV Toolkit 
(v 10.5.24) 

(Last Update 

Aug 4 2009) 

PhysioNet 

Cardiovascular 

Signal Toolbox 
(v 1.0) 

Kubios 
(v 3.0.2) 

(Premium) 

Kaplan 
(Last Update Feb 

3, 1998) 

Vollmer 
(v 0.98) 

Data Formats 

Accepted 

Intervals or 

Waveforms 

Intervals or 

Waveform 

Intervals or 

Waveform 
Intervals 

Intervals or 

Waveform 

Dependencies 
WFDB Libs 

(C Version) 
None None None 

WFDB Libs 
(Matlab Version) 

Waveforms 

Analyzed 
ECG, ABP 

ECG, ABP, 

PPG 
ECG None ECG 

Can Operate 

Independent 

from GUI 

Yes Yes No Yes Yes 

Open-Source Yes Yes No Yes Yes 

Preprocessing 

Intervals that 

are greater 

than 20% 

different than 

the average 

interval 

measured on 

20 beats 

before and 

after beat in 

question are 

removed 

Intervals that 

vary greater 

than 20% from 

the preceding 

interval are 

removed 

Proprietary 

and Unknown 

Statistical 

outlier 

removal and 

spline 

interpolation 

Filter function 

available but 

not integrated 

in HRV metric 

calculations 

Simulator None rrgen.c None makerr.m None 

HRV Metrics 

Mean NN, 

SDNN, 

pNN50, 

pNNxx, 

RMSSD, ULF, 

VLF, LF, HF, 

LF/HF, Total 

Power, 

SDANN, 

SDNNI, 

MSE, 

DFA, 

Mean NN, 

SDNN, pNN50, 

pNNxx, 

RMSSD, 

Skewness, 

Variance, ULF, 

VLF, LF, HF, 

LF/HF, Total 

Power, SDANN, 

SDNNI, 

SD1, SD2, 

SD2/SD1, DFA, 

ApEn, SampEn, 

MSE, PRSA 

(AC and DC), 

HRT 

Mean NN, 

SDNN, 

pNN50, 

pNNxx, 

RMSSD, 

VLF, LF, HF, 

LF/HF, Total 

Power, 

SDANN, 

SDNNI, 

SD1, SD2, 

SD2/SD1, 

DFA, ApEn, 

SampEn, 

MSE, 

Triangular 

Index, TINN, 

Peak 

Frequency, 

ECG Derived 

Respiration, 

Recurrence 

Plot Analysis 

Mean NN, 

SDNN, 

pNN50, 

pNNxx, 

RMSSD, 

VLF, LF, HF, 

LF/HF, Total 

Power, 

SDANN, 

SD1, SD2, 

SD2/SD1, 

DFA, ApEn 

Mean HR, 

SDNN, 

pNN50, 

pNNxx, 

RMSSD, 

VLF, LF, HF, 

LF/HF, Total 

Power, SD1, 

SD2,SD2/SD1, 

DFA, ApEn, 

Triangular 

Index, TINN, 

StDev of 

Successive 

Differences 

(SDSD), 

Correlation 

Dimension 

(CD), 

Euclidean 

Distance based 

on Relative RR 

Intervals 
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 1 

It is worth noting that the PhysioNet Cardiovascular Signal Toolbox includes more recent HRV statistics 2 

which have been shown to be highly predictive (MSE, PRSA), and versions of existing metrics which have 3 
been shown to be more computationally efficient (sampEn, ApEn), and important feature for Matlab 4 
versions, and more accurate (DFA). We have also ignored the less well-founded/more ad-hoc statistics, 5 
such as the TINN (which is just a poor estimate of a distribution) in favor of more acceptable statistics (such 6 
as the first four moments). 7 

3. PhysioNet Cardiovascular Signal Toolbox Design 8 
3.1. Overview 9 
The PhysioNet Cardiovascular Signal Toolbox developed by the authors utilizes a standardized approach 10 
to preprocess data and compute HRV metrics.   11 

1. An initialization file (InitializeHRVparams.m) sets up global variables that deal with 12 
thresholds, window settings, noise limits, and spectral analysis limits (listed in Appendix C). 13 
The default parameters are as used in this article. However, we strongly recommend the user 14 
consults and expert to identify a reasonable choice of parameters for their population. For 15 
example, children or smaller animals will require significantly different thresholds on almost 16 
all parameters. 17 

2. Data identification and formatting is then the next step. The toolbox does not assume any 18 
format of data, except that the RR interval data are a two equal length vectors (time and RR 19 
interval in units of seconds). Additionally, the ‘raw’ ECG, blood pressure waveform and 20 
photoplethysmographic/pulsatile data should be in the standard physical units (mV, mmHg or 21 
normalized units respectively). Note that we have included native support for loading WFDB-22 
compliant annotation files (usually denoted by an ‘atr’ file extension on PhysioNet, but not 23 
always). However, we have deliberately dissociated the toolbox from any library dependencies 24 
outside of the required Matlab toolboxes (listed in Appendix A).   25 

3. If raw waveforms are to be analyzed, the QRS complex or pulsatile beat onsets must be detected 26 
first using one of the in-built beat detectors (jqrs.m, wabp.m, qppg). We do supply other ECG 27 
beat detectors such as sqrs and wqrs for benchmarking and signal quality analysis, but we do 28 
not suggest using the results derived from their use unless your data is perfectly clean. 29 

4. Subsequently, the signal quality of the raw waveform data (either windowed or beat-by-beat) 30 
must be evaluated. A signal quality index (SQI) is calculated on a rolling window (Default is 31 
10 s, with 1 s increment, HRVparam.sqi.windowlength = 10 and HRVparams.sqi.increment = 32 
1) for the duration of the ECG waveform using bsqi.m, or on a beat by beat basis for blood 33 
pressure and pulsatile data using jsqi.m and PPG_SQI_buf.m respectively. Noisy data (below 34 
some defined threshold – 0.9 or 0.7 for example) must be removed from the analysis 35 
(HRVparam.sqi.LowQualityThreshold = 0.9 by default).  36 

5. Before calculating HRV statistics, arrhythmic periods of data must be removed.  37 
6. If desired ventricular fibrillation/ventricular tachycardia (VF/VT) can be detected on the 38 

waveform based on the method discussed in section III.B.3. The time series is next converted 39 
to RR-intervals by taking the consecutive differences of the beat locations in contiguous data 40 
(where segments have not been removed). If the user desires to use RR interval data instead of 41 
the raw waveforms, the RR interval time series can be loaded into the HRV Toolbox directly, 42 
although signal quality and VF detection cannot then be performed. 43 

 44 
Once the time series is in interval form, atrial fibrillation classification and ectopy (premature ventricular 45 
contraction (PVC)) can be performed on the RR interval time series. Any data that is deemed undesirable 46 
for HRV analysis (arrhythmia, low SQI, ectopy, artefact, noise) is excluded from analysis and HRV metrics 47 
are calculated on the remaining data.  48 
 49 
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For frequency domain calculations, the power spectral density (PSD) of the RR interval time series can be 1 
generated using several methods. Those methods include: the Lomb Periodogram, the Welch PSD estimate, 2 
the Burg PSD estimate, and the discrete or fast Fourier transform. An option to resample the RR interval 3 
time series is provided to users since the methods other than the Lomb Periodogram assume that the time 4 
series is uniformly sampled. All PSD estimates calculated by the HRV Toolbox described here can accept 5 
frequency bin delineation, which improves control over the reproducibility of the resulting analysis.  6 
 7 
After the PSD is calculated, various frequency domain HRV metrics are calculated. The sum of power in 8 
the various frequency bands is calculated as is the total power in the spectrum. These spectral metrics can 9 
be normalized to the variance of the RR interval time series, or to another measure. As stated above, many 10 
researchers normalize the sum of the power spectral density plot to variance because of the mathematical 11 
equivalency of the two. The choice of normalization is up to the user, but explicitly specified in the set-up 12 
of the analysis. 13 
 14 
A high-quality analysis of HRV starts with a thoughtful selection of data and input parameters. The length 15 
of the data source, the appropriateness of the method and extent of preprocessing, and the metrics to be 16 
generated all must be considered before, during, and after analysis. Poor choice of analysis parameters can 17 
result in the generation of erroneous results that are representative of noise instead of physiology. The 18 
following sections address the most common considerations of any HRV analysis. For a more detailed 19 
overview of the signal processing issues related to HRV, we refer the reader to Clifford et al. (Clifford et 20 
al., 2006). 21 
 22 
A set of demo files (listed in Appendix D) are made available to the user for testing the toolbox and verify 23 
the correct ‘installation’ of required Matlab packages.  24 
 25 
3.2. Waveform Preprocessing Routines 26 
3.2.1. Peak Detection 27 
The toolbox can accept electrocardiogram (ECG), blood pressure (ABP), and photoplethysmogram (PPG) 28 

data and has validated beat detectors for each of these 29 
signals. The available beat detectors for ECG include 30 
Matlab versions of the PhysioNet tools sqrs.c (Engelse and 31 
Zeelenberg, 1979; Moody, 2015b), wqrs.c (Moody, 2015a; 32 
Zong et al.), and jqrs (Behar et al., 2014; Johnson et al., 33 
2014). The performance of these peak detectors has been 34 

shown to be comparable to previously published detectors 35 
wqrs.c (Moody, 2015a), sqrs.c(Moody, 2015a), and gqrs.c 36 
(Moody, 2015a), available from the WFDB software 37 
package (The data from the performance comparison is 38 
included in Appendix B for convenience (Vest et al., 39 
2017).) Interested readers can learn more about how each 40 
detector functions from their respective citations, but an 41 
overview of the approximate trigger locations on the ECG 42 
is shown in Figure 1.  43 

The Matlab version of wabp.c, wabp.m, is used For pulse 44 
detection on ABP waveforms (Sun, 2006). This program 45 
detects the onset of each beat in the ABP signal using the slope sum function which amplifies the rising 46 

edge of the waveform. The same algorithm was also adapted and optimized to be used on PPG waveforms, 47 
establishing qppg.m as the toolbox’s PPG peak detector. 48 

 

Figure 1. Typical trigger points of each QRS 

detector. 

 



 
An Open Source Benchmarked Toolbox for Cardiovascular Waveform and Interval Analysis 

 8 

 
 

3.2.2.  SQI 1 
To determine if the data is of high enough quality to analyze, a quantitative and objective signal quality 2 
measurement should be employed. The toolbox uses bsqi (Li et al., 2008) for ECG, jSQI (Sun et al., 2005; 3 
Sun, 2006; Johnson et al., 2015) for ABP, and PPG_SQI_buf.m (Li and Clifford, 2012) for PPG. Published 4 
by Li, et al. (Li et al., 2008), bsqi provides the percentage of beats that match when detected by multiple 5 
annotation generators with highly differing noise responses. The signal quality index (SQI) is typically 6 
given as a percentage or normalized value, and a threshold below which data is removed should be chosen 7 
(or rather optimized) and reported. jSQI measures the quality of the ABP waveform on a beat by beat basis, 8 
returning a binary signal quality assessment based on a set of measured features on the ABP pulse, including 9 

onset time and pressure values. psqi also measures quality of the PPG waveform on a beat by beat basis 10 
based on beat template correlation. After determining the fit of the current beat to the template, the beat is 11 
assigned an assessment of excellent (‘E’), acceptable (‘A’), or unacceptable (‘Q’). 12 

3.2.3. VF/VT Classification 13 
Ventricular tachycardia/fibrillation detection is performed using a state-of-the-art method published by Li, 14 

et al. (Li et al., 2014), VF_Classification. In the published method, a support vector machine (SVM) model 15 
was trained on three annotated public domain ECG databases (the American Heart Association Database, 16 
the Creighton University Ventricular Tachyarrhythmia Database, and the MIT-BIH Malignant Ventricular 17 
Arrhythmia Database) and fourteen different VF features. After training, the model was optimized for use 18 
of only two features on 5 second windows, thus the classification algorithm is rapid and provides real time 19 
operation of VF detection. 20 

3.2.4. PVC Classification  21 
Premature ventricular contraction (PVC) detection is essential to HRV analysis, although PVC detection is 22 
not provided in any of the current open source toolboxes.  In our toolbox we provide a new software package 23 
for this which is based on the application of a convolutional neural network (CNN) to the wavelet transform 24 
(WT) of the raw ECG (Li et al., In Submission). The WT is used to map short segments of a single channel 25 
(1-D) ECG waveform into a 2-D time-frequency 'image'. The images are then passed into the CNN to 26 
optimize convolutional filters to improve classification. Using ten-fold cross validation, an overall F1 score 27 
of 84.94% and an accuracy of 97.96% was achieved on the MIT-BIH arrhythmia database. The American 28 
Heart Association ECG Database (AHA, Accessed 2018) was then used as an out-of-sample validation 29 
database. Without retraining, the PVC detector achieved an F1 score of 84.94% and an accuracy of 97.33% 30 
on this second database. We note that the identification of ectopic beats (as opposed to noise identification 31 
or other abnormal beats) is needed for not only for abnormal RR interval removal but for the evaluation of 32 
heart rate turbulence, for which it is important not to confuse noise with ectopy. Once an ectopic beat is 33 
identified, the researcher has the option to insert a 'phantom' beat or remove the RR intervals corresponding 34 
to the ectopic beat (both the preceding and following RR interval) as described below.   35 
(It should also be noted that for metrics that are sensitive to missing data (such as those involving Fourier 36 
analysis and resampling), it is important to remove both associated RR intervals and insert a phantom beat 37 
at the point where the RR interval would have been ‘expected’ to be under sinus rhythm. For intervals 38 
associated with noise, the interval can simply be removed and the adjacent intervals recalculated 39 
accurately.)    40 
 41 

3.2.5. RR Interval Preprocessing Routines 42 
Additional preprocessing steps are taken to address noise and artefact that occur at a scale smaller than the 43 
signal quality index window or in data that has already been translated into RR intervals.  Since HRV 44 

metrics are meant to measure the activity of the sinoatrial node, all intervals associated with non-sinus beats 45 

must be removed. Outside of beat classification in the ECG, a notoriously difficult issue which is highly 46 
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error prone or impossible in non-ECG or noisy ambulatory conditions, non-sinus beats can be identified 1 
with reasonable certainty using statistics of the RR interval time series itself. 2 

3.2.6. AF Classification 3 
Atrial fibrillation (AF) is detected on the RR interval time series using the method published by Oster, et 4 
al. (Oster and Clifford, 2015). The method uses a support vector machine (SVM) trained on features from 5 
the RR interval time series which reflect the unpredictability of the heartbeat. The classifier has been shown 6 
to produce an AUC of 96.76 % on windows containing 60 beats, 95.27 % on windows containing 30 beats, 7 
and 92.72 % on windows containing 12 beats (Liu et al., In Submission; Li et al., 2016). We recommend 8 
30 s windows with a 10 s overlap to minimize the amount of data removed, and a bias of the data away 9 
from high variability.  10 

3.2.7. Non-sinus beat identification and removal/replacement 11 
In the absence of waveform data, we may identify non-sinus RR intervals as those that occur prematurely 12 
or late. The most common method to identify such intervals (and the method employed in this work) 13 
involves measuring changes in the current RR interval from the previous RR interval or an average of the 14 

last N intervals and excluding intervals that change by more than a certain percentage. In this work we 15 
chose N to be 1 and a threshold of 20 %. A threshold of 15% balances the need to remove aberrant data 16 
with the desire to keep sinus beats and has shown to exclude at least 80 % of ectopic beats and 93 % of the 17 
noise-induced (extra beat) detections at the expense of 2 % sinus beats in the normal sinus rhythm database 18 
(Clifford, 2002; Clifford et al., 2002). If the non-sinus beats are infrequent, the PhysioNet Cardiovascular 19 
Signal Toolbox has the ability to perform interpolation to add a beat where a sinus beat would have been 20 
expected to occur. The term ‘interpolation’ is usually referred to the process by which the unevenly sampled 21 
RR interval data is resampled to an evenly sampled time series, usually prior to the use of the FFT. In this 22 
article, we follow Clifford et al. (Clifford, 2002; Clifford et al., 2006) and use resampling to refer to the 23 
conversion to an evenly sampled time series (see Section III.C.4).  24 

Additional checks and corrections include flagging and removing non-physiologic data (RR intervals above 25 
2 seconds or below .375 seconds, outside of physiologically possible range) and data that is labeled as non-26 
normal per a supplied annotation file (if applicable). 27 

3.2.8. Manual Correction 28 
The PhysioNet Cardiovascular Signal Toolbox does not enable manual correction of annotations or R peak 29 
locations. Although automated peak detectors do not always accurately classify the location of QRS 30 
complexes, manual correction of the location is a subjective procedure at best and inter-reader variability 31 
is a well-documented phenomenon that contributes to the inability to reproduce results amongst studies. 32 
Statistics on interreader variability have been measured to be greater than 20% (Zhu et al., 2014; Sparrow 33 
et al., 1988; Pinedo et al., 2010). The impact of this variability has not been measured for HRV, and is not 34 

within the scope of this paper, since we are specifically attempting to remove such subjective vagueness 35 
from HRV analysis through the publication of this toolbox. We explicitly advise against ‘expert’ or ‘hand’ 36 

modification of data, since it destroys scientific repeatability of the research. 37 

3.2.9. Resampling 38 
Re-sampling the RR interval time series involves interpolating through the signal (such as by linear or cubic 39 
spline interpolation) and re-sampling at regular intervals specified by the resampling frequency. Most of 40 
the papers in the field of HRV report on the use of re-sampling rates between 1 Hz and 10 Hz (Malik and 41 

Camm, 1995; Hilton et al., 1998; Malik, 1996). Since the human heart rate can sometimes exceed 3 Hz 42 

(180 bpm), then a sample rate of at least 6 Hz may be required to satisfy the Nyquist criterion. However, if 43 
one knows that the RR tachogram is unlikely to exceed 120 bpm then a re-sampling rate of 4 Hz is sufficient. 44 
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Re-sampling introduces an implicit assumption about the form of the underlying variation in the RR 1 
tachogram; for example, cubic spline techniques assume that the variation between beats can be modelled 2 
accurately by a cubic polynomial. 3 

3.2.10. Thresholding on Data Loss 4 
A threshold can be applied for how much data can be thrown out before a segment is rendered unusable, 5 
but this of course depends on the analysis being performed. Mølgaard et al. (Mølgaard, 1991) demonstrate 6 
how certain time series metrics (such as RMSSD) are extremely sensitive to missed beats especially in 7 
patients with reduced HRV and therefore it is extremely important to consider whether the data in such 8 
cases should be used at all. There is much variation in how researchers address the issue of removed beats 9 
or missing data (due to noise, missed detections, etc.). The calculation of time domain metrics may 10 
withstand large losses of data, but the results will vary based on the length of the segment analyzed.  11 

Error in the PSD estimate and frequency domain metrics grows linearly with the amount of data removed 12 
when interpolation is used prior to taking an FFT. FFT- or wavelet-based PSD estimates require resampling 13 
to an evenly sampled time series, and cubic spline interpolation is often preferred to linear interpolation 14 

because the latter increases LF power (due to flattening) and HF power (due to sharp edges at each beat). 15 
Linear interpolation is more susceptible to generating erroneous results with small amounts of artefactual 16 
data. On the other hand, cubic spline interpolation, while creating a more smoothly resampled time series, 17 
can become unstable at moderate levels of missing data and lead to unconstrained oscillations between 18 
nodes in the spline, which artificially elevate the HF power (Clifford, 2002; McSharry et al., 2003). FFT-19 

based time domain techniques are therefore highly susceptible to noise, ectopy and missing data, as shown 20 
in Clifford et al. (Clifford, 2002; McSharry et al., 2003). Moreover, Clifford and Tarassenko (Clifford and 21 
Tarassenko, 2004) showed that although phantom beat insertion does provide marginal improvements for 22 
FFT-based metrics, using more appropriate techniques that can handle unevenly sampled time series (such 23 
as the Lomb Periodogram(Scargle, 1982; Lomb, 1976; Press et al., 1992)) are far superior. Previous studies 24 
have shown losses of data up to 20% will not significantly alter results generated with the Lomb 25 
Periodogram, as long as the data are not missing in concentrated clusters (Clifford, 2002). We therefore do 26 
not recommend the use of interpolation, phantom beat insertion or techniques that require evenly sampled 27 
time series such as the FFT and Wavelet analysis. We note that some researchers work in the ‘beatquency’ 28 
domain in order to avoid resampling issues. However, missing data due to poor QRS detection or data 29 
excision due to noise disrupts this sequence and leads to false peaks in the spectra. Additionally, the axes 30 
are then a function of the data itself and causality/stability of the metric becomes an issue. We note that is 31 

it unclear whether several ventricular beats could be replaced by estimates of sinus beats without causing 32 
significant issues, but in reality, the baroreflex response due to ectopy (which is exploited by heart rate 33 
turbulence measures) creates a nonstationarity in the time series. Therefore, any analysis using methods 34 
that assume stationarity should be truncated at such a point and restarted after the discontinuity.  35 

In summary, if the incidence of artifact is high within a given segment then it is preferable to eliminate the 36 

segments from the analysis. If the incidence of artifact is low, removal of the artefact without replacement 37 
is recommended.(Clifford and Tarassenko, 2005) The exact regions of data removed and percentage of 38 
removed or missing data should be reported. 39 

3.3. Parameter Selection 40 
3.3.1. Length of Data  41 
The user needs to decide if a long term (~24 hours or longer) or short term (~5 minutes) recording is desired. 42 

(This can be done by modifying the HRVparams.windowlength and HRVparams.increment parameters in 43 
the initialization file). However, certain considerations and limits should be kept in mind. The choice 44 
depends on the research being performed and the availability and quality of data. Long term recordings 45 
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capture circadian rhythm variations that have been valued for diagnostic value (Malik, 1996) and short term 1 
metrics have been shown to be capable of assessing neurological activity (Malik, 1996; Malik and Camm, 2 
1995). Confounders for long term metrics HRV can include temperature (Malik and Camm, 1995), quality 3 
of sleep (Cooper et al., 2000), and large gaps in data and short term HRV can by influenced by changes in 4 
mental, emotional, or physical state. Both long and short-term recordings can suffer when data quality is 5 
low and only a fraction of the recording is useable, but to different extents. Care should be taken to control 6 
for these confounders when possible, and to assess their influence on the results when not.  7 

3.3.2. Window Size Depends on the HRV Metric Being Calculated 8 
The length of data analyzed has implications on the appropriateness of the HRV metrics being employed. 9 
In order to choose the best window size for the given analysis, the researcher must balance the requirement 10 
of stationarity (if required) versus the time required to resolve the information present. For most time 11 
domain HRV statistics, previous researchers have recommended long term recordings. Haaksma’s 1998 12 
study led to recommendations of 20 hours of data be collected to estimate time domain variables or for total 13 
power (calculated between 0.0001 Hz and 0.4 Hz) calculations (Haaksma et al., 1998). The Task Force on 14 

standards in HRV (Malik, 1996) recommends applying frequency domain methods to recordings at least 15 
10 times the inverse of the lower frequency bound of the investigated component, but no longer. This is to 16 
ensure stability of the signal. During a short-term period, the data can be considered to be stationary or 17 
quasi-stationary and is therefore amenable to estimation of the power spectral density (PSD). However, it 18 
is unlikely that the RR interval time series remains stationary for more than a few minutes, and this makes 19 
the above recommendation rather impractical.  20 

As an example, if the research is to determine if the RR interval time series contains a 0.01 Hz oscillation, 21 
at least 100 s of data (the length of one period of a 0.01 Hz oscillating signal) is necessary, although in 22 
practice 300 s or more are needed. The European and North American Task Force on standards in HRV 23 
(Malik, 1996) suggested that the shortest time period over which HRV metrics should be assessed is 5 24 

minutes. This results in a limitation of the lowest frequency that can be resolved being 
1

300
 ≈ 0.003 Hz 25 

(just above the lower limit of the VLF region). In practice the limit is higher since noise affects the 26 
estimation. A 5-minute segment can therefore only be used to evaluate higher frequency bands, i.e. LF and 27 
HF. The upper frequency limit of the highest band for HRV analysis is generally quoted as being 0.4 Hz 28 
(Malik and Camm, 1995), but in reality, frequencies can be estimated (only) up to the reciprocal of twice 29 

the shortest RR interval. In general, we quote the average Nyquist frequency as fN =
1

2 ∆tav
=

N

2T
 where ∆tav 30 

is the mean RR interval, T is the length of the window in seconds and N the number of RR intervals in the 31 

window. Thus, a 5-minute window (T = 300) leads to the constraint of 
N

2T
 ≥  0.4 Hz on the number of 32 

points and hence to a lower limit on N of 240 beats (an average lower heart rate limit of 48 bpm if all beats 33 
in a 5-minute segment are used). (Clifford, 2002; Clifford et al., 2006) 34 

Finally, it should be noted that metrics should only be compared between subjects when the data lengths 35 

are the same (Clifford, 2002) and they cover the same period of the circadian cycle (Clifford and 36 
Tarassenko, 2004; Clifford et al., 2006). The latter is particularly important, because diurnal or momentary 37 
changes in activity, both psychophysical (e.g. after lunch, exercise or a stressful event like driving) and 38 
consciousness-related (such as sleep) can be one of the most dominant factors confounding any HRV 39 
comparison. 40 

3.3.3. Frequency Bands for Spectral Content Estimation 41 
The frequency bands of interest for analyzing HRV are generally defined as: 42 

ULF  – Ultra Low Frequency: 0.0001 Hz  ≤   ULF   < 0.003 Hz 43 
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VLF  – Very Low Frequency: 0.003 Hz    ≤   VLF   < 0.04 Hz 1 

LF  – Low Frequency:  0.04 Hz      ≤   LF     < 0.15 Hz 2 

HF  – High Frequency:  0.15 Hz      ≤    HF     < 0.4 Hz 3 

The frequency bands are thought to capture different physiological mechanisms, but the bands can be 4 
redefined and do not perfectly map to a particular physiological process (Cerutti et al., 1995). The bands 5 
can also shift lower in the case of a very fit clinical study population with lower baseline heart rates, or 6 
higher in the case of a youth clinical study population with higher baseline heartrates. It is generally 7 

accepted in the clinical community that the HF band is mostly a measure of the parasympathetic activity 8 
(Cerutti et al., 1995) while the LF band contains sympathetic activation (Eckberg, 1997). Researchers may 9 
want to measure the power in the HF and LF frequency bands as a measure of sympathovagal balance. The 10 
LF/HF ratio is used often and simplifies the units of the measurement (i.e. it is unitless). However, we note 11 
that this ratio can change depending on whether the power is estimated in the logarithmic domain or not.  12 
The PhysioNet Cardiovascular Signal Toolbox defaults to normal domain and not logarithmic domain.  13 

3.3.4. Normalization Method 14 
Common normalization factors used for HRV metrics include the length of the data segment analyzed and 15 
the variance of the RR interval data. Variance is mathematically equal to total power of the RR interval 16 
time series, so many researchers normalize the total power by dividing by variance. No matter the 17 
normalization method, it is important that it is reported because it can contribute to inter-study differences.  18 

3.4. Long Range Scaling Metrics: DFA and MSE 19 
3.4.1. Detrended Fluctuation Analysis 20 
Detrended Fluctuation Analysis (DFA) is included as a part of this toolbox as a method for quantifying 21 
long-term self-similarities in RR-intervals time series (Peng et al., 1995). Such self-similarity can be 22 

described as a 1/ fβ scaling in the log-log power-frequency spectrum, where the β is the slope of this 23 

spectrum. An alternative method used to compute the fractal scaling exponent, α=(β+1)/2, is by using the 24 
DFA, which is briefly summarized in the following paragraph. (For a detailed description see Peng et al. 25 
(Peng et al., 1995).)  26 

Given a time series x(n) the first step of DFA consists of integrating the original time series in order to 27 

obtain a self-similar process y(k), 𝑦(𝑘) =  ∑ (𝑥(𝑖) − �̅�)𝑘
𝑖=1 , where x̄ is the mean of x. The next step consists 28 

of dividing the integrated time series into boxes of equal length m and for each box performing a least 29 

squares line fit to the data. The time series is then detrended by subtracting the local trend yn(k)in each box. 30 

At this point, for a given box size m, the characteristic size of the fluctuation F(m) for this integrated and 31 
detrended time series is calculated by: 32 

𝐹(𝑛) = √
1

𝑁
∑[𝑦(𝑘) − 𝑦𝑛(𝑘)]2

𝑁

𝑘=1

. 33 

The procedure is repeated over different time scales (box sizes) to provide a relationship between F(m) and 34 
the box size m.  35 

The code for DFA included in the PhysioNet Cardiovascular Signal Toolbox (i.e., dfaScalingExponent.m), 36 

provided by McSharry (McSharry and Malamud, 2005), has been integrated into the toolbox with minimal 37 

modification. New features introduced in this version include an option for the user to change the minimum 38 
and maximum box sizes and a midBoxSize parameter for the optional computation of scaling exponents α1 39 
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and α2. (Default parameters in the code mirror dfa.c and are set to: minBoxSize = 4; maxBoxSize = L/4, 1 
where L is the length of the input series; and midBoxSize = 16) (Moody, 2015a) 2 

3.4.2. Multiscale Entropy 3 
Multiscale entropy (MSE) analysis was first introduced by Costa et al. (Costa et al., 2005, 2002) as a method 4 
for analyzing the dynamic complexity of a system by quantifying its entropy over a range of temporal 5 
scales. Traditional methods use entropy-based algorithms to quantify the degree of regularity of a time 6 
series. However, there is no straightforward correspondence between regularity and complexity. MSE relies 7 
on sample entropy (SampEn) (Richman and Moorman, 2000), which quantifies the likelihood that two 8 
sequences similar for m points remain similar at the next point (i.e. match within a tolerance of r), not taking 9 
into account self-matches. This metric is included in the PhysioNet WFDB libraries and therefore is 10 
provided in our toolbox.  11 

MSE can be summarized as a two-step procedure. The first step consists of generating a coarse-grained 12 
time series by averaging the data points of the original time series x(n) within non-overlapping windows of 13 
increasing length, τ. For scale one, the coarse-grained time series y(1) corresponds to the original signal. 14 

The length of the coarse-grained time series is N/τ, where N is the length of x(n). The second step consists 15 
of computing the sample entropy on each coarse-grained time series. 16 

All the parameters used for MSE analysis can be changed in the InitializeHRVparametrs.m file (Default 17 
settings include the following:  RadiusOfSimilarity = 0.15 (r), patternLength = 2 (m),  maxCoarseGrainings 18 
= 20 (max τ)) 19 

Two implementations of the SampEn algorithms are provided, a normal speed and a fast speed. The fast 20 
speed version is an implementation of the traditional SampEn (FastSampEn.m) which provides equivalent 21 
results. Currently the program switches automatically to FastSampEn.m when the size of the time series is 22 
less than 34,000 points. This default was chosen based on the memory required for Matlab R2017a running 23 
on an Intel Core i7 processor equipped with 16 GB memory to execute the function. The user can modify 24 

this parameter in the function ComputeMultiscaleEntropy.m). 25 

3.5. Phase-Rectified Signal Averaging 26 
Phase-rectified signal averaging (PRSA) is a recently introduced method for identifying short-term quasi-27 
periodicities that are normally masked by non-stationarities and provide information on the deceleration 28 
(DC) and acceleration (AC) capacity of the heart (Bauer et al., 2006). The code made available in the 29 

PhysioNet Cardiovascular Signal Toolbox implements the simplest version of the PRSA algorithm, where 30 
the anchor points correspond to increases in the signal (or decreases):𝑥𝑖 > 𝑥𝑖−1 (𝑥𝑖 < 𝑥𝑖−1). In order to 31 
avoid anchor points at the positions of artifacts, a threshold parameter ensures that increases or decreases 32 
larger than such a threshold are discarded (Default = HRVparams.prsa.thresh_per = 20%; as suggested in 33 
Campana et al. (Campana et al., 2010)). The length (L) of the PRSA signal before and after the anchor 34 
points can be changed in the initialization file and should exceed the period of the slowest oscillation that 35 
is of interest (Default = HRVparams.prsa.win_length = 30). Wavelet analysis using Haar mother wavelet 36 
function is employed to derive the AC or DC from the central part of the PRSA signal (with scale parameter 37 
s defined by HRVparams.prsa.scale = 2 by default): 38 

𝐴𝐶(𝐷𝐶) =  ∑
𝑝𝑟𝑠𝑎(𝐿 + 𝑖)

2𝑠
− ∑

𝑝𝑟𝑠𝑎(𝐿 − 𝑖)

2𝑠
 .

𝑠

𝑖=1

𝑠

𝑖=1

 39 

For a more detailed description of the algorithm we refer the reader to Bauer et al., 2006. 40 

 41 
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3.6. Heart Rate Turbulence 1 
Heart Rate Turbulence (HRT) is a method used to analyze the fluctuations in sinus-rhythm cycle length 2 
after ventricular premature complexes (VPCs or PVCs)(Schmidt et al., 1999; Bauer et al., 2008). Two 3 
parameters are used to characterize the response of sinus rhythm to a VPC: the Turbulence Onset (TO) and 4 
Turbulence Slope (TS). TO is used as a measure of the initial acceleration after the VPC, and it is derived 5 
by comparing the relative changes of RR intervals immediately after and before a VPC: 6 

𝑇𝑂 = 100 ∗ 
(𝑅𝑅+2+𝑅𝑅+1)−(𝑅𝑅−1+𝑅𝑅−2)

(𝑅𝑅−1+𝑅𝑅−2)
 , 7 

where RR+ is the i-th sinus rhythm after the compensatory pause of the VPC and RR- indicates the coupling 8 
interval of the VPC. The TO value is first computed for each single VPC and subsequently averaged to 9 
obtain the value characterizing the patient (Bauer and Schmidt, 2003). TO can be also calculated on the 10 
averaged tachogram which leads to very similar values (Bauer et al., 2008). 11 

The second measure, the Turbulence Slope (TS), quantifies the deceleration rate after a VPC. TS is the 12 

maximum positive slope of a regression line assessed over any sequence of 5 subsequent sinus rhythm RR 13 
intervals within the first 20 sinus rhythm RR intervals after a VPC (Bauer et al., 2008). 14 

TO values below 0 and TS values above 2.5 are considered normal, and abnormal otherwise (i.e., a healthy 15 
response to VPCs is a strong sinus acceleration followed by a rapid deceleration (Clifford et al., 2006). 16 
Because the HRT pattern might be masked by heart rate variability (HRV) of other origins, the TS is 17 
computed on the VPC tachogram, obtained by aligning and averaging the R-R interval sequences 18 

surrounding isolated VPCs, for a sufficient number of VPCs (i.e., >5) (Bauer et al., 2008). Despite this 19 
accumulation of data around numerous VPCs, performing HRT analysis on very short ECG recordings may 20 
not lead to meaningful results (Berkowitsch et al., 2004). It is important to ensure that the sinus rhythm 21 
preceding and following a VPC is free of arrhythmia, artifacts, and false beat classification due to artifact. 22 
Thus, a set of exclusion criteria was implemented according to Clifford et al. 2006: 23 

• Remove all RR intervals < 300 ms or > 2000 ms 24 
• Remove all RRn where |RRn−1 − RRn | > 200 ms 25 
• Remove all RR intervals that change by more than > 20% with respect to the mean of the five 26 

previous sinus intervals (the reference interval) (Alternative: RR intervals that change by more than 27 
> 20% with respect to the previous one) 28 

• Only use VPCs with a minimum prematurity of 20% 29 
• Exclude extrasystolic pauses greater than 20% longer than the normal interval 30 

The function HRT_Analysis.m computes the TO and TS value given a time series of RR-intervals and 31 
related labels (annotations) following the PhysioNet standard1, the number of NN intervals to consider 32 
before the VPC (BeatsBefore), and after the PVC plus a compensatory pause (BeatsAfter). The function 33 

also returns the number and position of the VPCs used for the analysis, the average tachogram, and the 34 

graphical representations of the HRT analysis shown in Figure 2. When computing the average tachogram 35 

or the mean TO, the user should aim for include a minimum of 15 to 20 VPC tachograms. 36 

                                                           
1 https://www.physionet.org/physiobank/annotations.shtml 

https://www.physionet.org/physiobank/annotations.shtml


 
An Open Source Benchmarked Toolbox for Cardiovascular Waveform and Interval Analysis 

 15 

 
 

 1 
Figure 2. Visualization of HRT analysis using the PhysioNet Cardiovascular Signal Toolbox.  2 
Left figure shows an example of NN (normal to normal) interval sequences in one patient, all aligned at the VPC; the 3 
Turbulence Onset is computed for each single VPC and subsequently averaged to obtain the value characterizing the 4 
subject . Right figure shows the average tachogram used to compute the Turbulence Slope (TS). TS is the maximum 5 
of regression slopes computed for 5 consecutive NN sequences. In the example, the regression lines for beats 7~11 6 
corresponding to maximum slope is shown (red line). 7 
 8 

4. Methods 9 
A series of benchmarking studies were conducted on sample data using the PhysioNet Cardiovascular 10 
Signal Toolbox and the four other HRV toolboxes described in Table 1. These toolboxes were chosen for 11 

their popularity, open-source availability, regard amongst experts in the field, or a combination of these 12 
factors. The studies in the benchmarking analysis, their purpose, and their sub-studies are described here. 13 

4.1. Study A: Comparison to a known standard LF/HF ratio 14 
Study A compares the results generated by each toolbox on one HRV metric, the LF/HF ratio, using a 15 
known standard value. The standard LF/HF ratio is generated using an RR interval generator detailed in 16 

Clifford (Clifford, 2002), hereafter called LFHFGEN. The default options for each toolbox are used to 17 
simulate the results achieved by a typical user of the HRV toolboxes.  18 

The LF/HF ratio generated from the various toolboxes were compared by calculating the normalized root 19 
mean square error (NRMSE) using the method of mxm.c, a PhysioNet routine that calculates the root mean 20 
squared error and normalizes it per the equation 21 

 22 

where n equals the number of windows considered, XTest is the metric generated by the test toolbox on the 23 

ith window, and XStandard is standard compared against. The NRMSE value is reported back as a percentage. 24 
Default parameters and settings for each toolbox (per Table 3) were used unless otherwise specified in the 25 
Methods. 26 

𝑁𝑅𝑀𝑆𝐸 =
100 ∗  √

∑ (𝑋𝑇𝑒𝑠𝑡 – 𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑)2𝑛
𝑖=1

𝑛
1
𝑛

∑ 𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑛
𝑖=1

⁄  
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100 synthetic 300 s RR interval time series were created with randomly assigned LF/HF ratios between 0.5 1 
and 10 using the RR interval generator LFHFGEN. This generator produces an RR time series evenly 2 
sampled at 7 Hz composed of two sine waves at specific LF and HF frequencies (here we use the defaults 3 
of .095 Hz and .275 Hz respectively). The frequencies are then slowly shifted to smear out the LF and HF 4 
frequency bands to generate a specific known LF/HF ratio. Finally, the time series is unevenly sampled in 5 
a realistic manner by searching for (and keeping only) each consecutive RR interval that is at least as large 6 
as the time from the previously selected RR interval.  The time series were then analyzed with the various 7 
toolboxes according to  8 

Table 3 to estimate the LF/HF ratio and the normalized RMSE was calculated using a standard that is found 9 

before frequency shifting or downsampling.  10 

4.2. Study B: The significance of collective processing differences 11 
Study B expands the comparative analysis performed in Study A to include a wider selection of commonly 12 
assessed HRV metrics and their performance on both synthetic data and real patient data. The metrics 13 
generated include mean NN interval, PNN50, RMSSD, SDNN, HF, LF, LF/HF ratio, and total power. The 14 
default options for each toolbox are used to simulate the results achieved by a typical user of the HRV 15 
toolboxes. In addition to the default parameters, the artifact correction option (default: off) was also enabled 16 
on the Kubios toolbox analysis in order to determine the effects on HRV metrics. Each subsequent trial 17 
performs an evaluation on data with increasing amounts of noise. Trial 1 compares the HRV metric results 18 
from an analysis of synthetic RR interval data. Trial 2 compares the HRV metric results from an analysis 19 
of patient data from the MIT Normal Sinus Rhythm (NSR) database (Goldberger et al., 2000). Trial 3 20 
compares the HRV metric results from an analysis of patient waveform data from the MIT-BIH Arrhythmia 21 
database (Moody and Mark, 2001). The standard in all three trials is taken to be the PhysioNet HRV Toolkit, 22 
the most well published and validated of the available toolboxes. 23 

4.2.1. Trial 1: Synthetic RR Interval Data Analysis 24 
100 segments of synthetic RR interval data were generated using RRGEN (a method developed by 25 

McSharry et al. (McSharry et al., 2002; McSharry et al., 2003)) with the probability of ectopy set to 0.03 26 
% (Pe = 0.0003) and the probability of noise set to 0.48 % (Pn = 0.0048). The segments were analyzed in 27 
full and were 600 s long. No segments were excluded from the analysis.  28 

4.2.2. Trial 2: MIT Normal Sinus Rhythm Database RR Interval Data Analysis 29 
All 18 RR interval records from the MIT NSR database were segmented into 5 minute windows with 4 30 

minutes of overlap between windows, resulting in 23,103 windows. Non-normal annotations were removed. 31 
Windows with possible AF (according to our detector described in section 3.2.6) or with greater than 15% 32 
of the data missing were not analyzed, reducing the dataset to 22,230 segments. An additional 182 segments, 33 
containing mostly noise and artifact, were eliminated by the PhysioNet HRV Toolkit as un-analyzable. 34 

To determine the cause of diverging results from the toolboxes, a step by step comparison was performed 35 

using the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal Toolbox. The MIT Normal 36 
Sinus Rhythm database was analyzed and normalized RMS error was calculated after each step of the 37 
analysis for each HRV metric. In the interest of using cleaner data to determine the cause of processing 38 
differences, windows with greater than 5% of the data missing were not analyzed. The windows were 39 
minimally preprocessed with the PhysioNet HRV Toolkit and the data was then fed into both the 40 
PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal Toolbox.  41 

The first comparison (Comparison 1) involved only varying the toolbox for calculating HRV statistics. This 42 
involved keeping the preprocessing steps and definition of the frequency bins constant. The frequency bins 43 
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were assigned by the PhysioNet HRV Toolkit. The mean was removed before calculating spectral metrics. 1 
Mean NN interval, PNN50, RMSSD, SDNN, HF, LF, LF/HF ratio, and total power were calculated on each 2 
window over the entirety of the 24-hour recording for each patient (n = 18). The spectral metrics were 3 
calculated using the Lomb-Scargle Periodogram and normalized per the method in the C implementation 4 
of the function in Numerical Recipes in C (Press et al., 1992).  5 

The second and third comparisons added the effects of assigning frequency bins using the PhysioNet 6 
Cardiovascular Signal Toolbox method (Comparison 2) and preprocessing using the PhysioNet 7 
Cardiovascular Signal Toolbox method (Comparison 3) respectively. An overview of the differences 8 
between the comparisons can be seen in Table 2. 9 

Table 2. A summary of the stepwise comparison performed between the PhysioNet HRV Toolkit and the 10 
PhysioNet Cardiovascular Signal Toolbox.  11 

 Comparison 1 Comparison 2 Comparison 3 

Preprocessed 

with: 
PhysioNet HRV Toolkit PhysioNet HRV Toolkit 

PhysioNet HRV Toolkit 

&  

PhysioNet Cardiovascular 

Signal Toolbox 

Frequency 

Bins 

Assigned in: 

PhysioNet HRV Toolkit 

PhysioNet HRV Toolkit 

& PhysioNet 

Cardiovascular Signal 

Toolbox 

PhysioNet HRV Toolkit 

& PhysioNet 

Cardiovascular Signal 

Toolbox 

HRV 

calculated 

with: 

PhysioNet HRV Toolkit 

& PhysioNet 

Cardiovascular Signal 

Toolbox 

PhysioNet HRV Toolkit 

& PhysioNet 

Cardiovascular Signal 

Toolbox 

PhysioNet HRV Toolkit 

& PhysioNet 

Cardiovascular Signal 

Toolbox 

 12 

4.2.3. Trial 3: Waveforms of the MIT Arrhythmia Database 13 
All 48 records from the MIT Arrhythmia (BIH) Database were processed using the waveform analysis 14 

methods in the toolboxes which have this functionality (PhysioNet HRV Toolkit, Kubios, PhysioNet 15 
Cardiovascular Signal Toolbox, and Vollmer). Each roughly 30 min record was broken up into 5 min 16 
segments with 4 min of overlap between them and then each segment was analyzed for HRV metrics. 17 
Segments from all 48 records were compiled and NRMSE was computed on the compiled segments.   18 

Table 3. Differences between HRV analysis methods in the 5 HRV toolboxes benchmarked. Default options 19 
were selected. 20 
 

PhysioNet HRV 

Toolkit 

PhysioNet 

Cardiovascular 

Signal Toolbox 

Kubios Kaplan Vollmer 

QRS detection gqrs, wqrs, sqrs jqrs, wqrs, sqrs 
Unknown qrs 

detector 

No QRS 

detection 

(Requires 

WFDB) 

Noise and 

Artifact 

Identification 

Method 

Identify successive 

intervals whose 

difference exceeds 

threshold (20% of 

Identify 

successive 

intervals whose 

difference exceed 

Identify 

successive 

intervals whose 

difference 

‘Glitches’ 

identified 

using AR 

model 

None 
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the value of 

adjacent 20 

intervals on either 

side); 

Identify Non-

physiologic 

Intervals  

(RR < 0.4 s) 

(RR > 2 s) 

a threshold 

(20%); Identify 

PVCs, AF, VF; 

Identify Non-

physiologic 

Intervals  

(RR < 0.375 s) 

(RR > 2 s) 

exceed a 

threshold (20%) 

Artifact 

Correction 

Method 

Remove Non-

physiologic RR 

intervals and 

intervals that 

exceed threshold 

Remove RR 

intervals that 

exceed threshold 

(default = 20%), 

PVCs, suspected 

AF/VF/VT, Non-

physiologic beats, 

and Segments 

with SQI lower 

than 0.9 (when 

applicable) 

No interpolation 

Interpolate 

through RR 

intervals that 

exceed 

threshold 

Spline 

Interpolation 

through data 

labeled 

“glitches” 

None 

Frequency 

Vector (Hz) 

𝑑𝑓: 𝑑𝑓: 𝑑𝑓 ×  2 ×  𝐿 

𝑑𝑓

=  
1

4 × (𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)
 

𝐿 = 𝑑𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡ℎ 

𝟏

𝟏𝟎𝟐𝟒
:

𝟏

𝟏𝟎𝟐𝟒
: 𝟎. 𝟓 

𝟏

𝟑𝟎𝟎
:

𝟏

𝟑𝟎𝟎
: 𝟎. 𝟓 

𝑭𝒔

𝑳
(𝟎: 𝟏:

𝑳

𝟐
)  

𝑭𝒔

𝟐
(𝟎: 𝟏:

𝑵𝑭𝑭𝑻

𝟐
+ 𝟏) 

NFFT = 

2^nextpow2(L) 

Frequency 

Transformation 
PSD 

 Lomb Periodogram 

PSD 
 Lomb 

Periodogram 

FFT  
Welch 

Periodogram 
FFT FFT 

Power 

Calculation 

Squares PSD and 

Sums Bins in Band 

Squares PSD and 

Sums Bins in 

Band 

(Verify) 

Squares then 

Doubles 

FFT and 

Sums Bin in 

Band 

Doubles FFT 

and Sums Bins 

in Band 

Normalization 

√
𝑷𝑺𝑫

𝒏𝒐𝒖𝒕
 

nout = 0.5 * ofac * 

hifac * n 

ofac = 4, hifac = 2 

√
𝑷𝑺𝑫

𝒏𝒐𝒖𝒕
 

nout = 0.5 * ofac * 

hifac * n 

ofac = 4, hifac = 2 

(Verify) 

Normalizes 

to square of 

length of 

data segment 

analyzed 

Normalizes to 

length of data 

segment analyzed 

 1 

4.3. Study C: Validation of long range scaling metrics - DFA  2 
The DFA implementation from both the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular Signal 3 
Toolbox were used to estimate the scaling exponents of time series with normal distributions according to 4 
the experiments reported in (McSharry and Malamud, 2005). Synthetic RR interval data with given scaling 5 
coefficients (β) were generated (for β = -2: 0.25 :2, time series length 4096, for each β 20 time series where 6 
used). 7 
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The standard output for the PhysioNet HRV Toolkit’s implementation, dfa.c, contains two columns of 1 
numbers, which are the base 10 logarithms of n and F(n). The program does not compute the scaling 2 
exponent. To obtain such a scaling exponent the output has been fitted to a line using custom code written 3 
for the PhysioNet Cardiovascular Signal Toolbox. The slope of the line relating log F(n) to log n determines 4 

the scaling exponent (self-similarity parameter), α (4  n  N/4, where N is the signal length in samples). 5 

100 segments of synthetic RR interval data were generated using RRGEN (McSharry et al., 2002; McSharry 6 
et al., 2003) with the probability of ectopy and noise set to 0 % (Pe = 0, Pn=0). The segments were analyzed 7 
in full and were 24 hours long. The same dataset was analyzed for Studies D and E. Default options were 8 

used for all the toolboxes. 9 

4.4. Study D: Validation of long range scaling metrics - MSE 10 
The MSE values were computed and compared for 100 stochastic and 100 deterministic signals using the 11 
PhysioNet Cardiovascular Signal Toolbox and the PhysioNet HRV Toolkit. The MSE implementation from 12 
the PhysioNet HRV Toolkit Toolkit uses a default pattern length m = 2 and a similarity criterion r = 0.15, 13 
the same parameters that are set as default in the PhysioNet Cardiovascular Signal Toolbox. The maximum 14 
number of coarse-grained time series is defined by the parameter maxTau, which by default is set to be 15 
equal to 20. The scaling exponents of synthetic RR interval data were also estimated. A total of one hundred 16 
24-hour synthetic RR tachograms were generated using rrgen.m (Pn = 0, Pe=0) and used for the validation 17 
of PhysioNet Cardiovascular Signal Toolbox with respect to PhysioNet HRV Toolkit and to Kubios with 18 
and without the detrending preprocessing option. (Kubios MSE calculations default to detrending.) 19 

4.5. Study E: Validation of PRSA  20 
The PRSA algorithm from the PhysioNet Cardiovascular Signal Toolbox was evaluated against code 21 
provided by the original authors of PRSA (Bauer et al., 2006). One hundred synthetic, 24 hour RR interval 22 
time series were generated using rrgen.m for Pn = 0, Pe=0 were used for the validation of the code included 23 
in the PhysioNet Cardiovascular Signal Toolbox with respect to the one provided by Schmidt et al. (Schmidt 24 
et al., 1999). 25 

4.6. Study F: Validation of HRT  26 
The HRT algorithm from the PhysioNet Cardiovascular Signal Toolbox (HRT_Analysis.m) was evaluated 27 
against HRT code provided by Raphael Schneider (Bauer et al., 2008). The comparison was done on data 28 
from the Normal Sinus Rhythm RR Interval Database (Goldberger et al., 2000). Because of differences 29 
between the two implementations with preprocessing, both methods of preprocessing were tested (removal 30 

of RR intervals that change by more than > 20% with respect to the mean of the five last sinus intervals and 31 
removal of RR intervals that change by more than > 20% with respect to the previous one). 32 

5. Results  33 
5.1. Study A 34 
The PhysioNet Cardiovascular Signal Toolbox and Kaplan toolboxes achieve negligible error in the LF/HF 35 

ratio, with errors between 3.52 % and 4.98 %. (The rationale to indicate these are negligible here is that the 36 
LF-HF ratio changes by approximately 20-100% during different activities or between different medical 37 
conditions (Bernardi et al., 2000; Otzenberger et al., 1998).) Kubios’s default calculation using FFT 38 
achieves a 33.6% error. When the option is engaged to use the Lomb Periodogram method the error drops 39 
to 6.1 %. Vollmer’s Toolbox has the highest error at 58.2 % (see Table 4). We note that these errors may 40 
be consistent offsets, which, although prevent comparison between studies, can still provide valid 41 

comparisons within studies. Never-the-less, we strongly suggest using a toolbox with settings that provides 42 
an error below 5% or 10%, since this may still allow the user ability to distinguish between mental and 43 
physical activities. Note that from here on in this article, all comparisons will be made with the PhysioNet 44 
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HRV toolkit (written in C). This is not because this is necessarily correct, but because it is the most well-1 
known open source HRV toolbox, and one to which we would like to closely map in order to allow the 2 
interchange of C and Matlab functions when computational efficiency is important.  3 

 4 

Table 4. The normalized RMS error generated among different toolboxes on LF/HF ratio when compared 5 
to a known (artificial) standard.  6 

 PhysioNet 

HRV 

Toolkit 

PhysioNet 

Cardiovascular 

Signal Toolbox 

Kubios  

FFT 

Method 

Kubios 

Lomb 

Method 

Kaplan Vollmer 

LF/HF 25.0 % 5.7 % 33.6 % 6.1 % 3.5 % 58.2 % 

 7 
5.2. Study B 8 
5.2.1. Trial 1: Synthetic Data 9 
The entire dataset was analyzed with no records eliminated. The calculated error between the toolboxes 10 

when compared to the results from the PhysioNet Cardiovascular Signal Toolbox are shown in Table 5.  11 
Note that since the data are synthetic with no artifact, the artifact correction in the Kubios software leads to 12 
a negligible difference to the results calculated with the same software and no artifact correction. 13 

Table 5. The normalized RMS error generated on various HRV metrics compared to the metric calculated 14 
by the PhysioNet HRV Toolbox on synthetic data. 15 

Metric 

PhysioNet 

Cardiovas

cular 

Signal 

Toolbox 

Kubios No 

Artifact 

Correction 

FFT 

Kubios 

Artifact 

Correction 

FFT 

Kubios No 

Artifact 

Correction 

Lomb 

Kubios 

With 

Artifact 

Correctio

n 

Lomb 

Kaplan Vollmer 

Mean RR 0.4 % 0.4 % 0.4 % 0.4 % 0.4 % 0.4 % 0.4 % 

pNN50 4.2 % 4.9 % 4.6 % 4.9 % 4.6 % 4.2 % 4.2 % 

RMSSD 2.0 % 1.1 % 1.0 % 1.1 % 1.0 % 1.9 % 1.9 % 

SDNN 9.4 % 34.5 % 34.5 % 34.5 % 34.5 % 8.3 % 9.3 % 

VLF 48.7 % 94.0 % 94.0 % 87.5 % 87.5 % 26.4 % 4.3105 % 

LF 28.5 % 36.1 % 36.1 % 51.4 % 51.2 % 39.4% 1.1106 % 

HF 70.8 % 38.0 % 38.0 % 34.1 % 34.3 % 45.6 % 1.6106 % 

TTLPWR 49.3 % 65.5 % 65.5 % 59.2 % 59.2% 11.4 % 6.0105 % 

LF/HF 137.1 % 102.9 % 102.9 % 114.4 % 114.4 % 139.7 % 35.5 % 
 16 

5.2.2. Trial 2: Patient Data 17 
Of the 23,103 segments created from the database, 22,994 had annotations marked ‘N’ (normal). A total of 18 

2,835 segments were not analyzed because AF was detected (2,366 segments) or too little data was present 19 
in the segment (more than 5% of the window was missing or noisy).  20 

The calculated error between the toolboxes when compared to the results from the PhysioNet HRV Toolkit 21 
are shown in Table 6. The PhysioNet Cardiovascular Signal Toolbox operates most closely to the PhysioNet 22 
HRV Toolkit, as is seen by its low NRMSE values.  23 
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Table 6. The normalized RMS error generated among different toolboxes on standard HRV metrics when 1 
compared to the values of the same metrics calculated by the PhysioNet HRV Toolkit on expert beat-2 
labelled RR interval data taken from the MIT Normal Sinus Rhythm Database. 3 

Metric 

PhysioNet 

Cardiovas

cular 

Signal 

Toolbox 

Kubios No 

Artifact 

Correction 

FFT 

Kubios 

Artifact 

Correction 

FFT 

Kubios No 

Artifact 

Correction 

Lomb 

Kubios 

With 

Artifact 

Correction 

Lomb 

Kaplan Vollmer 

Mean RR 1.5 % 4.2 % 3.7% 4.2 % 3.7% 3.9 % 4.2 % 

pNN50 17.1 % 55.1 % 38.7% 55.1 % 38.7% 44.3 % 54.4 % 

RMSSD 31.7 % 165.7 % 113.6% 165.7 % 113.6% 128.2 % 171.6 % 

SDNN 18.3 % 67.1 % 58.4% 67.1 % 58.4% 52.3 % 71.1 % 

VLF 67.3 % 158.6 % 159.5% 880.9 % 157.0 % 146.9 % 2.5105 % 

LF 90.2 % 298.2 % 184.0% 802.2% 200.4 % 184.8 % 6.6105 % 

HF 163.6 % 1.9103 % 1.1103 % 961.7 % 555.9 % 785.4 % 1.4106 % 

TTLPWR 71.0 % 325.0 % 217.9% 711.5 % 155.7 % 186.8 % 4.6105 % 

LF/HF 49.2 % 72.3 % 67.5% 72.8% 50.6 % 50.3 % 102.8 % 

 4 
Although large difference exists for all toolboxes, the PhysioNet Cardiovascular Signal Toolbox provided 5 
the closest correspondence to the PhysioNet HRV Toolbox. To determine the origin of the differences, the 6 
PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit were compared side by side on the 7 

MIT NSR database. In Comparison A, the PhysioNet Cardiovascular Signal Toolbox generated results 8 
which were within 3.4% normalized RMSE of the PhysioNet HRV Toolbox (Table 7) on all metrics tested. 9 
The metrics with the highest error were PNN50 and RMSSD. The minor differences in these metrics can 10 
be largely attributed to the fact that the PhysioNet HRV Toolbox removed additional data points on the 11 
edge of the windows compared to the method by the PhysioNet Cardiovascular Signal Toolbox. To a lesser 12 
extent, the remainder of the error is due to round off of constants that can be performed differently in Matlab 13 
and in C (integers can be defined differently). None of these errors are clinically significant compared to 14 
any studies that have leveraged HRV metrics, and therefore we consider the toolboxes equivalent in this 15 
benchmark test. 16 

Frequency binning (Comparison B) added significant error to the calculation of spectral metrics. The LF/HF 17 
ratio was least impacted by this effect, but the error still increased on this metric to almost 2%. Once the 18 
preprocessing was varied (Comparison C), the errors continued to climb. 19 

Table 7. The calculated differences between the PhysioNet HRV Toolkit and the PhysioNet Cardiovascular 20 
Signal Toolbox as determined by the NRMSE method. Comparison A uses identical settings for both 21 
toolboxes. Comparison B introduces the variability due to the different frequency binning methods between 22 
the two toolboxes. Comparison C introduces the variability due to preprocessing differences between the 23 
two toolboxes. N/A indicates not applicable (because the trial affected only spectral metrics). 24 

Comparison → 

HRV Metric  
A B C 

Mean NN interval 0.0 % N/A 0.6 % 
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pNN50 3.4 % N/A 11.8 % 

RMSSD 2.6 % N/A 8.3 % 

SDNN 0.0 % N/A 10.0 % 

VLF 0.0 % 8.6 % 41.0 % 

LF 0.0 % 3.8 % 27.4 % 

HF 0.0 % 4.0 % 32.4 % 

LF/HF ratio 0.0 % 1.8 % 42.4 % 

TTLPWR 0.0 % 4.8 % 24.0 % 

 1 
5.2.3. Trial 3: Waveform Data 2 
The calculated error between the toolboxes when compared to the results generated by the PhysioNet HRV 3 
Toolkit are shown in Table 8. Windows that did not meet minimal requirements for the PhysioNet 4 
Cardiovascular Signal Toolbox were not analyzed, resulting in the loss of 92 out of 1248 windows. Those 5 
minimal requirements include greater than 90% SQI and less than 15% of data lost to cleaning. Only the 6 
Kubios software with artifact correction compared with the PhysioNet Cardiovascular Signal Toolbox in 7 
terms of mapping to the existing PhysioNet HRV Toolbox.  8 

 9 

Table 8. The normalized RMSE difference generated among different toolboxes on standard HRV metrics 10 
when compared to the values of the same metrics calculated by the PhysioNet HRV Toolkit. 11 

Metric 

PhysioNet 

Cardiovascular 

Signal Toolbox 

Kubios no 

Artifact 

Correction 

FFT 

Kubios 

with 

Artifact 

Correction 

FFT 

Kubios no 

Artifact 

Correction 

Lomb 

Kubios 

with 

Artifact 

Correction 

Lomb 

Vollmer 

Mean RR 2.1 % 8.8 % 8.5 % 8.8 % 8.5 % 11.7 % 

pNN50 36.4 % 91.0 % 76.5% 91.0 % 76.5% 86.3 % 

RMSSD 86.6 % 976.5 % 189.2 % 976.5 % 189.2 % 299.3 % 

SDNN 74.1 % 1.3103 % 127.6 % 1.3103% 127.6 % 166.0 % 

VLF 243.6 % 8.0104% 507.5 % 5.8104 % 401.7 % 1.0105 % 

LF 603.3 % 4.2 105 % 1.6103 % 2.3105 % 467.3 % 3.1 % 

HF 918.7 % 1.4104 % 1.1103 % 3.9105 % 601.1 % 5.8105 % 

TTLPWR 380.9 % 1.1105 % 572.9 % 1.5105 % 352.1 % 2.1105 % 

LF/HF 793.1 % 824.3 % 793.7 % 792.4 % 791.4 % 797.1 % 

 12 

5.3. Study C: Validation of long range scaling metrics - DFA  13 
Results for the estimation of the scaling exponents of time series with normal distribution and known 14 
scaling coefficients are reported in Figure 3. 15 
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 1 

Figure 3.  Mean and standard deviation (over 20 time series for each β) of estimated scaling exponents α, calculated 2 
using the PhysioNet HRV Toolkit (red diamonds) and the PhysioNet Cardiovascular Signal Toolbox (blue dots), 3 
compared to the theoretical exponent β. For both the methods the estimated exponent is linked to the theoretical 4 
exponent by β = 2α - 1 for -0.75 <= β <= 2.25. It should be noted that the characteristic RR-interval series is usually 5 
in the region between β = 0 and β =2 (McSharry and Malamud, 2005).  6 

 7 
The calculated difference between the toolboxes when compared to the results from the PhysioNet HRV 8 

Toolkit are shown in Table 9.  9 

Table 9. The NRMSE generated among different toolboxes on DFA scaling coefficients α1 and α2 10 
compared to the values calculated by the PhysioNet HRV Toolkit.  11 

 
PhysioNet 

Cardiovascular 

Signal Toolbox 

Kubios 

(default settings) 

Kubios 

(no detrending) 
Kaplan 

α1* 1.5 % 5.4 % 0.6 % 0.7 % 

α2** 3.1 % 34.6% 16.1% 18.6 % 

* PhysioNet HRV Toolkit: 4-16; PhysioNet Cardiovascular Signal Toolbox: 4-16; Kubios: 4-

16; Kaplan: 4-16 
** PhysioNet HRV Toolkit: 16-N/4; PhysioNet Cardiovascular Signal Toolbox: 16-N/4; 

Kubios: 16-64; Kaplan: 16-64 

Note that the large difference for the coefficient α2 found for the Kubios software could be a consequence 12 
of the default detrending option using the method called smoothness priors, which basically corresponds to 13 
a time-varying high pass filter with fc = 0.035 Hz using default parameters.  14 
  15 
Figure 4 highlights the effect of the detrending option on the estimation of α2. 16 



 
An Open Source Benchmarked Toolbox for Cardiovascular Waveform and Interval Analysis 

 24 

 
 

 1 
 2 

 3 
Figure 4. Results from DFA generated using Kubios with detrending and smoothness priors (left; α1 = 1.26, α2 = 4 
0.79) and without detrending (right; α1 = 1.29, α2 = 1.12). 5 
 6 
5.4. Study D: Validation of long range scaling metrics - MSE 7 
The comparison of Multiscale Entropy values using the PhysioNet Cardiovascular Signal Toolbox and the 8 
PhysioNet HRV Toolkit for 100 stochastic and 100 deterministic signals shows very close correspondence 9 
and variance at all scales (Figure 5). 10 
 11 

 12 
Figure 5. Multiscale Entropy values using PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit 13 
for 100 stochastic and 100 deterministic signals. 14 
 15 
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Results for MSE computed on 24-hour synthetic RR tachograms are shown in Figure 6, which reports the 1 
NRMSE for each MSE scale calculated with the PhysioNet Cardiovascular Signal Toolbox in comparison 2 
to the MSE scale calculated by the PhysioNet HRV Toolkit. The error was shown to be lower than 0.05% 3 
at all scales for the PhysioNet Cardiovascular Signal Toolbox. The Kubios MSE implementation, with and 4 
without detrending, shows significantly higher error.  5 

 6 
Figure 6. Plot of the NRMSE at different scales of Multiscale Entropy using the PhysioNet Cardiovascular Signal 7 
Toolbox, the PhysioNet HRV Toolkit, and Kubios for 100 synthetic RR interval signals generated using RRGEN (Pn 8 
= 0, Pe=0). 9 
 10 
5.5. Study E: Validation of PRSA  11 
Summary results for AC and DC on synthetic RR interval time series are reported in Table 10. 12 
 13 
Table 10. The normalized RMS difference generated among different toolboxes on PRSA  coefficients  DC 14 
and AC compared to the values calculated by the PRSA implementation provided by Bauer et al. (Bauer et 15 
al., 2006). 16 

 PhysioNet Cardiovascular 

Signal Toolbox 
Bauer et al. NRMSD 

DC (ms) 5.9 ± 0.1 5.9 ± 0.1 0.0% 

AC (ms) -6.0 ± 0.1 -6.0 ± 0.1 0.0% 

 17 
 18 
5.6. Study F: Validation of HRT metrics 19 
Comparison of HRT algorithms on the Normal Sinus Rhythm RR Interval Database for the PhysioNet 20 
Cardiovascular Signal Toolbox using the default filtering option against the code provided by Raphael 21 
Schneider (Bauer et al., 2006) resulted in a NRMSE value of 9.4% for the TO and 8.5% for the TS. Using 22 
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the second filtering option (removal of RR intervals that change by more than > 20% with respect to the 1 
previous), as implemented in the original code provided by Raphael Schneider, resulted in an NRMSE 2 
value of 6.5% for the TO and of 1.0% for the TS. 3 

 4 
We investigated the reason of the larger error for the TO value using the second filtering setting. On the 5 
analyzed dataset, for some recordings, a larger number of VPC tachograms have been ‘filtered’ by the 6 
PhysioNet Cardiovascular Signal Toolbox than the Schneider code. When two or more VPCs are separated 7 
by only a small amount of time the rejection is performed differently. The PhysioNet Cardiovascular Signal 8 
Toolbox excludes VPCs for which one of the two RR-intervals before the current VPC is a compensatory 9 
pause of the previous VPC, while in Schneider’s implementation those VPCs tachograms are considered 10 
valid. 11 
 12 
An example is reported in Figure 7 where the tachogram related to the second VPC contains the 13 
compensatory pause (CP) of the preceding VPC. Since a tachogram is considered valid if it has sinus rhythm 14 
preceding and following a VPC, both tachograms are excluded by our implementation. TO is computed 15 
using the two RR intervals preceding the VPC and following the CP, thus including a CP in the computation 16 
of the TO might lead to different results. 17 
 18 

 19 
Figure 7.  Example of two consecutive VPCs in signal nsr10. Tachogram related to the second VPC contains the 20 
compensatory pause CP of the preceding VPC and thus is excluded by the HRT algorithm implemented in the 21 
PhysioNet Cardiovascular Signal Toolbox. 22 

 23 
6. Discussion 24 
The benchmarking results demonstrate that significant errors result from seemingly small and 25 
inconsequential choices in analysis methods. Moreover, the earlier in the process pipeline that the choices 26 
begin to differ, the larger the overall effects. The differences in analysis methods, parameter choices, and 27 
data preprocessing have yielded a field of HRV results that are impossible to compare between patient 28 
populations and research groups, and perhaps even within research groups. The results show that it is 29 

imperative that future studies adhere to a consistent method of reporting upon how an analysis has been set 30 
up. The following discussion will review the effects in greater detail along with some warnings and 31 
recommendations from the authors.  32 
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6.1. Effects of Preprocessing: Beat Deletion or Insertion 1 
How a preprocessing algorithm addresses noise, ectopy, or artifact can have either a subtle or a significant 2 
effect on the results of analysis and depends to a large extent on how reliable or corrupt the data is to begin 3 
with. When a comparison was made between data pre-processed with the PhysioNet Cardiovascular Signal 4 
Toolbox and the PhysioNet HRV Toolkit, two toolboxes with markedly similar approaches to HRV 5 
analysis, the differences observed ranged from 0.6 % on the Mean NN interval to over 40 % on LF/HF ratio 6 
(Table 7, Comparison C). The calculations of RMSSD and PNN50 are particularly sensitive to noisy RR 7 
intervals. When investigating the cause of this error, it was observed that a single window with just one or 8 
two removed non-physiologic data points can dramatically affect the estimated value of the RMSE. More 9 

markedly, Table 8 shows that even simple time domain statistics can differ by significant amounts when 10 
different QRS detectors or abnormal interval filters are employed. 11 

6.2. Effects of Frequency Bin Choice on Spectral Analysis 12 
The effect of differing frequency bins on the results of spectral analysis can be a significant source of error 13 
between two different methods analyzing the same data. When the PhysioNet HRV Toolkit and PhysioNet 14 

Cardiovascular Signal Toolbox were allowed to define the frequency bins separately, the RMS error on 15 
LF/HF ratio, a metric that is buffered from error because of the nature of ratios, was over 2% (Table 2, C 16 
Generated Frequency Bins vs Matlab Generated Frequency Bins). The error for the identical power 17 
calculations with slightly different frequency bands was nearly 4% at best and 8% at worst. Especially at 18 
the Ultra Low (ULF) and Very Low Frequencies (VLF), where the binning may leave these bands with 19 
only 1 to 5 bins, changes in those bins can lead to significant differences in the outcome.  20 

6.3. Effects of Normalization of Spectral Metrics 21 
Normalization of the Power Spectral Density estimation is a seldom reported parameter that can have a 22 
very large influence on spectral results, especially when they are not reported as ratios. It is usually very 23 
difficult to retrospectively determine how an author has normalized data if only a select handful of 24 
parameters are reported. Notably, in comparing two different (but frequently employed) normalization 25 
methods on a common PSD estimation, it was found that LF/HF ratios, a theoretically robust metric to 26 
normalization, differed substantially between the two methods.  27 

6.4. Recommendations 28 
When considering the use of HRV analysis in research, it is important that researchers carefully consider 29 
the data to be analyzed and the assumptions of the analysis. An essential part to that consideration is 30 
identifying the methods and settings used for the analysis and providing this listing in the subsequent 31 

publication along with the data. The PhysioNet Cardiovascular Signal Toolbox initialization file can be 32 
used as a template when publishing this information. Researchers should compare subjects with similar 33 
length recordings to minimize the effect of metrics sensitive to temporal recording length (such as scaling 34 
metrics). Moreover, longer recordings can lead to larger averaging, or the capture of behaviors at different 35 
points in the circadian or daily rhythm. (A subsequent article in preparation will address the issue of just 36 
how much two recordings can differ in length before the metrics become incomparable.) Subjects should 37 

also be exposed to similar psychosocial scenarios, where stress, environment, and mental state can be 38 
carefully controlled variables. (Sleep is a good normalization approach, as shown in (Clifford and 39 
Tarassenko, 2004).  40 
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When using frequency domain analysis, the Lomb Periodogram has been demonstrated to be the superior 1 
choice for RR interval data (Clifford and Tarassenko, 2005). Therefore, it should be standard practice to 2 
present results using the Lomb Periodogram when referencing a spectral metric. However, it is important 3 
to note that the RR interval time series is not a stationary time series and therefore, sliding a window across 4 
data and using a technique that assume stationarity is somewhat flawed. Although there has been much 5 
attention paid to time-frequency tools over the last two decades, little work has been done on unevenly 6 
sampled data and so we do not currently include such tools in this toolbox (since the effect of resampling 7 
on such tools has not been rigorously tested). Instead we recommend segmenting data into stationary blocks.  8 

 9 

7. Conclusions 10 
This article presents evidence in support of standardizing HRV analysis methods and demonstrates how the 11 
PhysioNet Cardiovascular Signal Toolbox achieves such a standardization. Comparison to standard models 12 
and other available software demonstrate that the PhysioNet Cardiovascular Signal Toolbox can even be 13 
used itself as a benchmarking system for other HRV studies, FDA filings, and industrial applications (due 14 

to the BSD licensing). Rigorously applying the standards described in this article and working with 15 
common, benchmarked code such as that provided with this publication, will improve the science of HRV 16 
analysis and should provide a significant boost to its clinical utility. Using in-house code that has not been 17 
thoroughly benchmarked and failing to report all parameter settings will continue to hold the field back. In 18 
particular we found that, with certain potential clinically significant differences in long range metrics, 19 

Kubios software was similar to our toolbox and the PhysioNet C toolbox and is sufficient for clinicians to 20 
use if they are willing to hand operate the software on a per-file basis (since no scripting facility is available 21 
in Kubios at this time). We caution against the use of default parameters, particularly when dealing with 22 
raw ECG. We recommend that researchers use our Matlab toolbox except where fast implementation is 23 
needed, and then to use the PhysioNet C implementation where code is available. We note that none of the 24 
toolboxes presented are as comprehensive the toolbox described here, and we encourage benchmarked 25 
contributions to our software, which is freely available from PhysioNet2 and Github (Vest et al., 2018). 26 
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Appendices 40 
A. Software Requirements to Use the PhysioNet Cardiovascular Signal Toolbox 41 
The current version (1.0) of the HRV toolbox was tested with the following Matlab configuration: Matlab 42 
(v 9.3), Signal Processing Toolbox (v 7.3), Neural Network Toolbox (v 7.0), and Statistics and Machine 43 
Learning Toolbox (v 11.0). The Toolbox has been tested using Windows, OSX, and Unix systems.  44 

B. QRS Detection Benchmark Testing for PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV Toolkit 45 
Appendix Table A1  provides results detailed in Vest et al. (Vest et al., 2017) for a comparison of the 46 
standard QRS detectors available in the PhysioNet Cardiovascular Signal Toolbox and PhysioNet HRV 47 
Toolkit when tested on the MIT BIH Arrhythmia Database. Note that the database on which they are tested 48 
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is largely free from noise and artifact. The F1 scores therefore reflect how well they perform in ideal 1 
circumstances. When noise is present, only jqrs and gqrs are able to maintain accuracy.   2 

Appendix Table A1. Performance of Peak Detectors when tested on the MIT-BIH Arrhythmia Database (taken from 3 
(Vest et al., 2017)) 4 

Peak 

Detector Recommended Application 

F1 St 

Dev 

wqrs.c Low noise scenarios or as a comparator to detect noise 99.00 1.89 

wqrs.m Low noise scenarios or as a comparator to detect noise 99.04 1.84 

sqrs.c Low noise scenarios or as a comparator to detect noise 98.19 4.22 

sqrs.m Low noise scenarios or as a comparator to detect noise 96.33 6.38 

jqrs.m Long term moderate to high noise recordings, such as in ICU Holter 

or exercise. 

93.02 12.27 

gqrs.c Moderate noise ICU or Holter recordings 95.72 14.84 

 5 

 6 
  7 
C. Default parameters in the PhysioNet Cardiovascular Signal Toolbox 8 
Note that parameters related to file extension, demo visualization, and saving options are not reported. Only 9 
analysis related parameters are summarized below.  10 
 11 
Appendix Table A2. Default parameters in the PhysioNet Cardiovascualr Signal Toolbox. au indicates arbitrary 12 
units 13 

Parameter Value Unit Description 

data_confidence_level 1 au NOT YET IN USE 

windowlength 300 s HRV statistics analysis window length 

Increment 60 s HRV statistics sliding window increment 

Numsegs 5 au Number of segments to collect with lowest HR 

RejectionThreshold 0.2 au 

Amount of data that can be rejected before a 

window is considered too low quality for 

analysis. 0.2 = 20% 

MissingDataThreshold 0.15 au 
Maximum percentage of data allowable to be 

missing from a window. 0.15=15% 

sqi.LowQualityThreshold 0.9 au Threshold for which SQI represents good data 

sqi.windowlength 10 s SQI analysis window length 

sqi.increment 1 s SQI sliding window increment 

sqi.TimeThreshold 0.1 s 
Maximum absolute difference in annotation times 

that is permitted for matching annotations. 

sqi.margin 2 s Margin time not include in comparison 

preprocessg.aplimit 2 s Maximum believable gap in RR intervals 

preprocess.per_limit 0.2 au 
Percent limit of change from one interval to the 

next. 0.2=20% 
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preprocess.forward_gap 3 s 
Maximum tolerable gap at beginning of 

timeseries in seconds 

preprocess.method_outliers ‘rem' - Method of dealing with outliers 

preprocess.lowerphysiolim 0.375 au Lower physiological limit, minimum RR interval 

preprocess.upperphysiolim 2 au Upper physiological limit, maximum RR interval 

preprocess.method_unphysio ‘rem'  Method of dealing with unphysiologically low 

beats. ‘rem’ = removal 

Preprocess.threshold1 0.9 au Threshold for which SQI represents good data 

preprocess.minlength 30 s 
The minimum length of a good data segment in 

seconds 

af.windowlength 30 s 
AFib analysis window length, set to include ~30 

beats in each window 

af.increment 30 s AFib sliding window increment 

timedomain.alpha 50 ms Alpha value for PNN analysis method 

timedomain.win_tol 0.15 m 
Maximum percentage of data allowable to be 

missing from a window. 0.15=15% 

prsa.thresh_per 20 % 
Percent difference that one beat can differ from 

the next in the PRSA code 

prsa.win_length 30 s 
The length of the PRSA signal before and after 

the anchor points 

pPrsa.scale 2 au 
Scale parameter for wavelet analysis (to compute 

AC and DC) 

ulf 0-0.0033 Hz ULF  band, requires window > 300 s 

vlf 0.0033-  0.04 Hz VLF  band, requires at least 300 s window 

lf 0.04-  0.15 Hz LF band, requires at least 25 s window 

hf 0.15-   0.4 Hz HF band, requires at least 7 s window 

freq.zero_mean 1 - 
Option for subtracting the mean from the input 

data 

freq.method ‘lomb’ - 
Frequency estimation method, Options: 'lomb', 

'burg', 'fft', 'welch'  

freq.normalize_lomb 0 - 
When selected, adds a normalization step to 

frequency domain analysis 

freq.burg_poles 15 au 
Number of coefficients for spectral estimation 

using the Burg method (not recommended) 

freq.resampling_freq 7 Hz Resampling frequency for 'welch', 'fft', or 'burg' 

freq.resample_interp_method ‘cub’ - 
Resampling interpolation method for 'welch', 'fft', 

or 'burg' 

freq.resampled_burg_poles 100 au Number of poles for burg method 

sd,segmentlength 300 s 
Windows length for SDANN and SDNNI 

analysis  

PeakDetect,REF_PERIOD 0.25 s 
Assumed refractory period after a natural sinus 

beat 

PeakDetect.THRES 0.6 au Energy threshold of the peak detector  

PeakDetect.fid_vec [] - 

If some subsegments should not be used for 

finding the optimal threshold of the P&T then 

input the indices of the corresponding points here 

PeakDetect.SIGN_FORCE [] - 
Force sign of peaks (positive value/negative 

value). Particularly useful in a window by 
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window detection with uncertain peak polarity. 

Could be used to build an Fetal ECG template. 

PeakDetect.ecgType ‘MECG’ - Use QRS detector for Adult ECG analysis 

PeakDetect.windows 15 s 
Size of the window onto which to perform QRS 

detection 

MSE.windowlength [] s 
Window size in seconds. Default [] performs 

MSE on the entire signal  

MSE.increment [] s 
MSE window increment. Default [] performs 

MSE on the entire signal 

MSE.RadiusOfSimilarity 0.15 au Radius of similarity (% of std) 

MSE.patternLength 2 au Pattern length for SampEn computation 

MSE.maxCoarseGrainings 20 au Maximum number of coarse-grainings 

Entropy.RadiusOfSimilarity 0.15 au Radius of similarity (% of standard deviation) 

Entropy.patternLength 2 au Pattern length for SampEn computation 

DFA.windowlength [] s 
Windows size for DFA analysis. 

Default [] performs DFA on entire signal 

DFA.increment [] s 
Sliding window increment for DFA analysis. 

Default [] uses no sliding window 

DFA.minBoxSize 4 au Smallest box width for DFA analysis 

DFA.maxBoxSize [] au 
Largest box width for DFA analysis 

Default [] uses the signal length/4 

DFA.midBoxSize 16 au Medium time scale box width for DFA analysis 

HRT.BeatsBefore 2 au Number of beats before VPC  

HRT.BeatsAfter 16 au Number of beats after VPC and CP 

HRT.windowlength 24 h Window size for HRT analysis. Default 24 h 

HRT.increment 24 h 
Sliding window increment or HRT analysis 

Default 24 h 

HRT.filterMethod ‘mean5before’ - HRT analysis filtering option 

 1 

 2 

D. Demonstration Code Available in the PhysioNet Cardiovascular Signal Toolbox 3 
1. Atrial Fibrillation Detection Demo: DemoRawDataAF.m 4 

This demonstration analyzes a segment of raw (or filtered) ECG signal with known atrial 5 
fibrillation to show the operation of the AF detection algorithm and its use in removing segments 6 
of arrhythmia during HRV analysis. 7 

2. Annotated Data Demo: DemoAnnotatedData.m 8 
This demonstration uses the PhysioNet Cardiovascular Signal Toolbox on RR intervals with 9 
annotations. After pre-processing the RR intervals - taking into account the beat annotations - and 10 
removal of windows containing AF, the HRV analysis is performed on the clean NN (normal-to-11 
norma) time series and the resulting output is saved in a .csv file. 12 

3. ECG, ABP, and PPG Data Demo: DemoRawDataICU.m 13 
This demonstration analyzes a segment of data collected in the intensive care unit (ICU) which 14 
contains ECG, ABP, and PPG signals. This demo will perform HRV analysis on the raw ECG 15 
signals as well as detection of fiducial points of PPG and ABP signals. It will also display the pulse 16 
transit time (PPT) graph (Blood Pressure vs PTT). 17 

4. RRGEN Data Demo: DemoStandardizedData.m 18 
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This function demonstrates the function of the synthetic RR interval generator RRGEN and the 1 
calculation of HRV metrics. 2 
 3 
 4 

 5 
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