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Abstract

Acute hypotension is a critical event that can lead to

irreversible organ damage and death. When detected in

time, an appropriate intervention can significantly lower

the risks for the patient. The objective of this work is to

describe an automated statistical method that produces an

automated method to predict acute hypotension episodes,

using the least data possible.

We first detailed the problem of having more features

than samples in the PhysioNet/CinC Challenge 2009 trai-

ning set. We constrained our analysis to the largest com-

mon subset of features available for all patients (arterial

blood pressure measurements). We then used information

divergence (or Kullback-Liebler divergence) between two

distributions to identify the most discriminative features.

We used these features in each training set to classify the

samples in the test sets using a nearest neighbors (NN) al-

gorithm. With this method, we obtained a score of 9/10 for

event 1, and 32/40 for event 2 compared to a control me-

thod which gives us 10/10 for event 1, and 35/40 for event

2. Our preliminary results showed that our method leads

to significantly better than random results, therefore it in-

creases our information about the samples in the test sets.

1. Introduction

We describe in this paper an automated statistical me-

thod that produces an automated method to predict Acute

Hypotensive Episode (AHE), using a minimal subset of the

available data. We constrained our model in the number

of parameters to satisfy Occam’s razor, which tells us that

when we have two models that make the same predictions,

we should take the simplest one. Our interpretation is that

if we can make a prediction without using a parameter, we

should get rid of it.

Our automated statistical method uses information di-

vergence to select relevant features, and the nearest neigh-

bors algorithm as the non-parametric classifier. We com-

pared this method’s results with an ad hoc method to va-

lidate its effectiveness on the PhysioNet/CinC challenge

2009 dataset. Considering that prediction within a forecast

window was required, temporal analysis was done, and a

forecast window length was selected minimizing the trai-

ning error while respecting the challenge’s constraints.

2. Data

The training data available for the challenge consisted

of various vital signs : ECG waveforms, pulmonary ar-

terial pressure (PAP) and arterial blood pressure (ABP)

measurements and statistics in mmHg, central venous pres-

sure, heart rate, respiration rate, SpO2, cardiac output, and

alarms annotations.

Low blood pressure is usually defined as blood pressure

of less than 90/60 mmHg or 90/50 mmHg. An AHE, which

we had to detect, is defined as any period of 30 minutes or

more during which at least 90% of the Mean Arterial Pres-

sure (MAP) measurements were at or below 60 mmHg. We

used this definition when we designed our control method

for AHE prediction.

2.1. Challenge requirements

We constrained our analysis to the largest common sub-

set of features available for all patients in the training

and test sets. The SpO2 measurements seemed discrimi-

nant in the training datasets but has been rejected be-

cause test datasets did not contain this information. Hence,

the common subset contained only ABP measurements

(ABPDias, ABPMean, and ABPSys). We had access to

almost continuous 10 hours recordings of these signals for

60 labelled patients. For event 1, we had 10 unlabelled pa-

tients to classify. For event 2, we had 40 unlabelled patients

to classify.

Event 1 consisted in identifying if a patient belonged to

an AHE group or to a group with no documented AHE

during their hospital stay (subgroups H1 and C1 respec-

tively). Event 2 consisted in predicting which patient had

experienced an AHE within the forecast window. The fact

that a patient may have experienced an AHE before or after

but had been classified as without AHE (subgroup C2) ad-

ded complexity to the analysis because it caused data fea-
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tures to overlap each other. Another subgroup with AHE,

but with patient without pressor medications (subgroup

H2), was also included for event 2 to minimize pressors

data bias implication.

We could have chosen to extract many statistics from

this common subset of information. However, there was a

reason why we wanted to choose a small subset of features

instead of using them all at once.

2.2. Sampling in high dimensions

A danger when modeling distributions from samples in

high-dimension is to overfit a complex model using too

few samples. For example, it is always possible to separate

N samples in N − 1 dimensions (features) with linear se-

parators[1]. For event 1, it means that you are assured to

always separate the 30 training samples in 2 classes using

29 statistics on the data with a linear model. Overfitting the

parameters makes the estimated statistical model useless in

predicting the labels of new patients.

When sampling in high dimensions, a greater number of

samples points are close to the edges of the domain. When

it happens, we cannot consider the domain as “local”. We

call this phenomenon “curse of dimensionality” [2].

When using local methods such as k-nearest neighbors,

we suppose the neighbors of the sample of interest will be

local to it. In high dimensions this assumption is no longer

true.

Furthermore, increased model complexity makes the er-

ror on the test sample increase with respect to the error on

the training sample[3].

For all these reasons, it is not reasonable to try to infer a

complex rule from high dimensional data, hence the need

for a proper feature selection method for the CinC chal-

lenge.

2.3. Information divergence and Feature

Selection

Information divergence (or Kullback-Liebler diver-

gence[4]) is a symmetric measure of the difference bet-

ween two probability distributions P and Q.

DKL(P,Q) =
∑

i

P (i)log(
P (i)

Q(i)
) +

∑

i

Q(i)log(
Q(i)

P (i)
)

We used this measure of information to identify the most

discriminative features. To discretize the domain, we used

20 equal-sized bins divided from the minimum and maxi-

mum value of each feature dimension.

We then found the features θ that made the distributions

P and Q the most divergent.

θ̂ = arg max
θ

(DKL(Pθ, Qθ))

2.4. Temporal features

There are many ways to see time series from a statistical

perspective. In this work, we compared the relevance of

taking more or less time before T0 in the training sets, in a

single window or many consecutive windows.

Since we used the information divergence factor as the

decision factor, we required a single value for each feature.

When we used many consecutive windows, we kept only

the window with the minimum value for each feature. This

is justified because we are trying to identify AHE, which

is by definition a lower value of the ABP.

Figure 1. Mean ABP values for event 1, last 15 minutes

before T0, with 2.5 minutes windows.

Figure 1 shows the evolution of two features over time

for different patients. Bigger numbers represent measure-

ments closer to T0.

3. Classification methods

In order to compare the behaviour of our completely au-

tomated method, we designed a control method based on

human visual inspection of the data. This control method

(threshold based on 2 features) is compared with the au-

tomated method (information divergence for feature selec-

tion and nearest neighbors for classification). We used the

error on the training set to choose temporal features. We

used the cross-validation approach to estimate the training

error of the nearest neighbors algorithm.

3.1. Nearest neighbors

We used the two most discriminative features in each

training set, defined by the information divergence, to clas-

sify the samples in the test sets using a simple nearest

neighbors algorithm.

Ŷ (x) =
1

k

∑

xi∈Nk(x)

yi

The nearest neighbors of a sample are the closest ones

according to the Euclidian distance. The accuracy of this

method depends on whether we have a labelled sampled
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close to the new sample. In other words, the neighborhoods

have to be “local”. It does not perform well when outliers

are present in the training set. In our analysis, k = 1.

3.2. Control method

We implemented the control method based on visual in-

formation of pairs of features. We manually selected the

features we thought were good to separate the samples

from the labeled distributions.

For event 1, we designed the control method knowing

that 5 out of 10 had to be classified as AHE. The limit

was set to 60 mmHg, according to the definition of the

AHE, and a diagonal line was set to correctly classify two

patients with high systolic blood pressure (see figure 2).

For event 2, we used the same kind of threshold as for

the one of event 1, with the limit set to 50 mmHg because

too many patients were classified with an AHE, and the

challenge’s rule was to have between 10 and 16 patients

from that group.

3.3. Cross-validation

We estimated the classification error of the nearest

neighbors algorithm on the training sets using each sample

and comparing it to all N − 1 remaining samples (leave-

one-out). This method is a special case of the K-fold cross-

validation with K = N , and it is widely used when we

have a small number of training samples. Leave-one-out is

known to have low bias but possibly high variance [1].

4. Results

Our results showed that our automated statistical me-

thod leads to significantly better than random results, the-

refore it increases our information about the samples in the

test sets. However, the control method gave us slightly bet-

ter results for this challenge.

4.1. Procedure

Our final selection method for temporal windows fol-

lows these four steps :

1. Compute the error on the training samples for each win-

dow length and number.

2. Sort results according to the training error to select the

window length with minimum error.

3. Apply analysis on the test samples.

4. Discard window length if the number of AHE detected

does not respect the challenge’s constraints (for event 2).

5. If two results are identical, choose the smallest analysis

window.

For event 1, the procedure selected a single 2.5 minutes

window for the control method, and a single 60 minutes

window for the automated method.

Table 1. Training error on event 2 data using the control

method with different window lengths and total duration

(minutes).

len/dur 2.5 5 10 15 30 60

2.5 16 16 16 16 15 15

5 0 16 16 16 16 16

10 0 0 18 18 18 17

15 0 0 0 18 16 18

30 0 0 0 0 19 19

60 0 0 0 0 0 20

As depicted in table 1, the best results with the control

method (2.5 minutes windows, 30 minutes duration) did

not meet the challenge’s requirement for event 2 (see step

4). The procedure selected a single window of 2.5 minutes

for the control method, and 2.5 minutes windows on the

last 30 minutes for the automated method.

4.2. Event 1 results

We achieved a 9/10 classification rate with the automa-

ted method and 10/10 using the control method. As shown

on figure 2, the single error from the automated method

was a false positive.

Table 2. Information divergence for event 1 features.

. 0 1 2 3 4 5

0 6.8 13.4 13.5 11.6 13.4 11.5

1 13.4 8.4 12.4 12.7 12.7 12.6

2 13.5 12.4 9.5 12.5 12.6 12.5

3 11.6 12.7 12.5 2.8 7.1 9.2

4 13.4 12.7 12.6 7.1 4.7 8.7

5 11.5 12.6 12.5 9.2 8.7 5.5

The information divergence matrix of 2-dimensional

distributions using every pair of features is presented in

table 2. The matrix is symmetric. The matrix shown here

is for a single 2.5 minutes window before T0. Features are

mean (columns 0, 1, 2) and standard deviation (columns

3, 4, 5) values for ABPSys, ABPDias, and ABPMean.

The features kept by the automated method in event 1

were the mean of ABPSys and the mean of ABPMean.

We can see in the matrix that the pairs (mean ABPSys,

mean ABPDias) (chosen in the control method) and (mean

ABPSys, std ABPDias) have almost the same informatio-

nal divergence as the one automatically chosen.
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