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Abstract

The 2018 PhysioNet Computing in Cardiology Chal-
lenge focused on diagnosing sleep disorders, motivated
by enabling treatment to alleviate the associated men-
tal and physical health consequences. The dataset con-
sists of 1,985 patients monitored at an MGH sleep lab-
oratory where vital signs were recorded, and arousal re-
gions were annotated by experts. This work presents a
deep-learning method to identify sleep arousals. In tra-
ditional machine learning, feature extraction is one of the
most time-intensive considerations, requiring a great deal
of domain expertise and experimentation. In contrast, deep
learning techniques automatically learn variable interac-
tions between pairs or groups of signals, and any relevant
temporal dependencies. This allows such algorithms to
automatically extract sleep patterns from rich physiolog-
ical time series. The model presented here integrates ideas
from several successful deep learning models to construct
a multi-channel time-series convolutional-deconvolutional
neural network. This network was trained using cross-
entropy loss, and evaluated on a 20% held-out validation
set. Hyper-parameters were selected on the AUPRC met-
ric, and training utilized early stopping to prevent over-
fitting. The resultant model achieved an AUPRC of 0.369
and an AUROC of 0.855 on the final competition test set.

1. Introduction

Improving sleep quality is an important concern due to
the significant detrimental impacts of poor sleep on health
quality. Despite recent discoveries in the mechanisms gov-
erning human sleep patterns, many things about the rea-
sons we sleep are still not understood [1, 2]. Despite these
gaps, significant associations have been well-established
between poor sleep quality and a wide range of negative
outcomes [3,4]. The 2018 PhysioNet Computing in Cardi-
ology (CinC) challenge seeks to develop automated meth-
ods for quantifying sleep states, motivated to discover the
sources of non-apnea sleep arousals.

Machine learning (ML) provides an extremely flexible

toolset for solving problems involving large-scale data. In
many cases, ML algorithms enable decision support tools
which assist front-line healthcare providers to make effi-
cient clinical decisions from significantly more informa-
tion than would otherwise be possible [5, 6].

Selecting a specific ML algorithm is initially governed
by the size and dimensions of the available data, the ex-
pected patterns in the data, and the available computa-
tional resources. While significant advantages may be con-
ferred by domain expertise and extensive feature engineer-
ing, as is done in traditional statistical learning models,
these advantages may be rendered unnecessary by suffi-
ciently powerful models in conjunction with large datasets.
Deep learning models relax model constraints to increase
flexibility and power, and ameliorate the consequent over-
fitting issues by reducing learning rates and training the
models on many samples. Convolutional neural networks
(CNN’s) are an extremely efficient and parallelizable set
of models for structuring temporally or spatially correlated
data [7–10]. Although developed for computer vision and
image processing, CNN’s have demonstrated applications
in many forms of time series data, including multi-channel
physiological waveforms [11].

2. Methods

2.1. Overview

13 channels of annotated sleep waveforms were used
as inputs to the model, including electroencephalogra-
phy (EEG), electrooculography (EOG), electromyogra-
phy (EMG), electrocardiology (ECG), and oxygen satu-
ration (SaO2), as shown in Figure 1. A Convolutional-
Deconvolutional Neural Network was provided these
waveforms and trained to predict the probability of arousal
at each time step. The network was inspired by densely
connected CNN and semantic segmentation networks
which generate attention maps over an image [7–10]. This
architecture allows for a flexible model with applications
in many variable-length time series tasks, and captures
interactions between temporally-correlated physiological
signals in its convolutional filter weights. The final model
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Figure 1. Time series waveforms given as inputs to the
competition (blue), and labels determining whether the pa-
tient was in a sleep arousal phase (red).

was implemented in PyTorch and trained on an NVIDIA
Tesla M60 GPU to 23 epochs in roughly 13 hours.

2.2. Model Architecture

The convolutional-deconvolutional network architecture
used to identify arousal regions is shown in Figure 2. The
final model comprised 8 convolutional layers, 8 decon-
volutional layers, and a single fully connected layer. A
softmax was applied to the final layer to produce proba-
bility estimates across the binary classes. Multi-channel
1-dimensional filter kernels were convolved along the time
dimension. Each convolutional layer group contained—in
order—a sequence of a 1-dimensional convolution layer,
dropout regularization, batch normalization, and a ReLU
nonlinearity. The final model included 1x2 maxpool lay-
ers following the ReLU’s of the second and third groups.
The model’s Deconvolutional layers were comprised of of
a 1-dimensional deconvolution, or transpose convolution,
followed by a batch normalization layer, and a final ReLU.

The model also utilized “skip” cross-connections: the
input of each deconvolutional layer included both the out-
put of the previous deconvolutional layer and the output
of the corresponding convolutional layer. The two inputs
were concatenated in the channel dimension. These skip
connections gave the later deconvolutional layers direct ac-
cess to higher-level network features, preventing the net-
work from needing to implicitly pass all low-level infor-
mation through the entire network. Finally, the fully con-
nected layer was added to allow the network to compare

the output activations from the penultimate layer with each
of the other outputs temporally in order to make a decision
about each output element based on the entirety of a pa-
tient’s information.

2.3. Training Phase

To train the model, the 994 patients in the labeled train-
ing dataset were randomly split into an 80% training split
of 795 patients, and a 20% validation split of 199 patients.
The amount of waveform data for each patient varied
widely, ranging from approximately 3 million waveform
values (∼4 hours) to over 7 million values (∼10 hours).
The data for all patients’ waveforms was −1-padded to a
length of 7, 159, 808 = 437 · 214 which was both longer
than the maximum sample length for any single patient in
both the train and test set, and also a convenient multiple of
a power of 2, facilitating hyper-parameter exploration, par-
ticularly in the number of layer groups, and both maxpool
and convolutional strides.

The model was trained on an inverse class-frequency-
weighted binary cross-entropy loss function over the out-
put probabilities. The label frequency across the training
set was 61.7% non-arousal (0), 4.46% arousal (1), and
33.84% not-scored (−1). Therefore, the loss function en-
forced a much higher penalty on misclassifying arousals
than mis-classifying non-arousals. The model weights
were updated using an Adam optimizer. All values labelled
as −1, either from the test labelling or from the max-length
padding, were masked from the loss function, and there-
fore did not contribute to the optimization gradients.

2.4. Hyperparameters

Table 1. Hyperparameter settings used for our final model.
These values were tuned using the AUPRC of the 20%
held-out validation data.

Hyperparameter Value
learning rate 1× 10−3

dropout probability 0.05
conv kernel sizes [63, 7, 7, 7, 7, 3, 3, 3]
conv output sizes [16, 32, 32, 32, 32, 64, 64, 64]

conv strides [32, 2, 2, 2, 2, 1, 1, 1]
deconv kernel sizes [3, 3, 3, 7, 7, 7, 7, 63]
deconv output sizes [64, 64, 64, 32, 32, 16, 16, 8]

deconv strides [1, 1, 1, 2, 2, 4, 8, 16]

The training phase examined a wide range of hyperpa-
rameters, including the number of layers, convolutional fil-
ter kernel and stride sizes, optimizer learning rate, dropout
probability, and combinations of maxpool layers and skip
connections. The final network parameters are given in Ta-
ble 2.4. The hyperparameters were chosen based off of the
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Figure 2. Convolutional-deconvolutional arousal identification network with cross-connections.

maximum validation AUPRC over the entire training run.
Because each input to the model was an entire patient’s
data (13 waveforms, padded to a length of 7,159,808),
the hardware resources were restricted to implementing
stochastic gradient descent with batch sizes of 1. However,
this was not the only restriction due to the choice of input.
The sheer data size limited the number of the activations
which could be stored in memory, and, since the activa-
tions decreased in size with every subsequent layer, this
problem chiefly limited hyperparameter selection for the
first convolutional (and last deconvolutional) layer. The
first layer’s large filter size of 63 and stride of 32 alleviated
the top-level memory constraints.

3. Results

The final AUROC, AUPRC, and loss metrics are shown
in Table 3. The training loss was notably lower than, and
the AUROC/AUPRC metrics notably higher than their re-
spective validation values, indicating an overfit to the train-
ing data, despite the dropout regularization in the convolu-

Table 2. Area under the receiver operating characteris-
tic curve, area under the precision-recall curve, and the
frequency-weighted cross-entropy loss for each split.

AUROC AUPRC Loss
Train 0.914 0.496 0.051
Validation 0.856 0.406 0.078
Test 0.855 0.369 -

tional filters. Further, the validation split metrics slightly
outperformed the test set; indicating a either an overfitting
of the validation set due to repeated hyper-parameter se-
lection, or an artifact of the smaller validation split.

Figure 3 shows three metrics evaluated on both the train-
ing and validation set as the model trained. The training
phase employed early stopping to prevent overfitting; the
final model used the model weights from epoch 18, as the
model achieved the highest AUPRC after this epoch. How-
ever, the training curves show that the training/validation
loss diverge quickly, and the training/validation AUPRC
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Figure 3. Training curves for the final model, showing
the AUPRC (top), AUROC (middle), and loss (bottom) for
the training (blue) and validation (red) splits. The training
employed early stopping to prevent overfitting; the final
model implemented the network weights after epoch 18.

diverges around epoch 7, indicating that the model be-
gan overfitting far before epoch 18. Although higher
dropout rates decreased the model’s performance, future
work could explore other methods of model regularization,
such as adding an L2 weight penalty to the loss function.

4. Conclusions and Future Work

The convolutional-deconvolutional model demonstrated
significant precision and recall on a complex medical di-
agnostics task with minimal reliance on domain-specific
knowledge. As this model was trained on the raw data
with no pre-processing, it may be applied to similar classi-
fication problems with minimal modification.
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