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Seminar Announcement, Johns Hopkins University, 1998
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Jean-Baptiste-Joseph Fourier

1807 “On the Propagation of Heat in Solid Bodies”

1812 Grand Prize of Paris Institute

“Théorie analytique de la chaleur” 

‘... the manner in which the author arrives at 
these equations is not exempt of difficulties and 
that his analysis to integrate them still leaves 
something to be desired on the score of generality 
and even rigor.’

1817 Elected to Académie des Sciences

1822 Appointed as Secretary of Math Section

paper published

Fourier’s work is a great mathematical poem.
Lord Kelvin
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Fourier Integral
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Fourier Spectrum
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Fourier Series Expansion:

n Any function f(t) can be expanded in 
terms of discrete sine or cosine 
functions as
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Random and Delta Functions
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Fourier Components : Random Function
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Fourier Components : Delta Function
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Fourier Sums : Delta Function
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Problems with Fourier Expansion

n Linear and Stationary assumptions.
n Trigonometric function with constant 

frequency and amplitude over the whole time 
span

n Superposition holds true limited to linear 
systems.

n Phase information not fully used.
n No difference between delta and random 

functions in frequency spectral representation.
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Data Analysis is equivalent to Information 
Extraction

n Data is the only connection between us and the realty.

n All our information is contained in the data.

n Data analysis is the means to extract information form the data.

n Unless we have clear understanding of the underlying processes, data 
analysis should not be based on a priori basis methods.

n Adaptive basis is the best approach to extract the maximum amount 
information.

n Hilbert-Huang Transform (HHT) is based on an adaptive approach.

n Data analysis is mechanical; result interpretation is the key to yield 
information.
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The Main Data Analysis Tasks

n Distribution: global properties limited to homogeneous population only; 
HHT can help extract component with homogeneous scale.

n Filtering: mostly Fourier based in frequency space; HHT is a nonlinear 
time scale based filter.

n Regression: fit data to an a priori functional; HHT fits adaptively with 
spline.

n Correlation: need to detrend; HHT offers adaptive detrend.

n Spectral Analysis: time-frequency representation; HHT for data from 
nonlinear and nonstationary processes.

n Prediction: stationary processes; HHT could help here too by provide 
band-limited components fro easier prediction.
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Motivations for a New Method

n Physical processes are mostly nonstationary

n Physical Processes are mostly nonlinear

n Data from observations are invariably too short

n Physical processes are mostly non-repeatable.  

∪ Ensemble mean impossible, and temporal mean 
might not be meaningful for lack of ergodicity. 
Traditional methods inadequate.
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Available Data Analysis Methods
for Nonstationary (but Linear) time 
series

n Various probability distributions
n Spectral analysis and Spectrogram
n Wavelet Analysis
n Wigner-Ville Distributions
n Empirical Orthogonal Functions aka Singular 

Spectral Analysis
n Moving means
n Successive differentiations
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Available Data Analysis Methods
for Nonlinear (but Stationary and 
Deterministic) time series

n Phase space method
• Delay reconstruction and embedding
• Poincaré surface of section
• Self-similarity, attractor geometry & 

fractals

n Nonlinear Prediction

n Lyapunov Exponents for stability
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The Need for Instantaneous Frequency in 
Nonstationary and Nonlinear Processes
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Duffing Pendulum
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Hilbert Transform : Definition



5/26/2006 20

Hilbert Transform Fit
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The Traditional View of  the 
Hilbert Transform 
for Data Analysis
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Traditional View
a la Hahn  (1995)  : Data LOD
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Traditional View
a la Hahn  (1995) : Hilbert
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Traditional View
a la Hahn  (1995) : Phase Angle
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Traditional View
a la Hahn  (1995) : Phase Angle Details
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Traditional View
a la Hahn  (1995)  : Frequency
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Why the traditional 
view does not work?
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Hilbert Transform a cos q + b : Data
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Hilbert Transform a cos q + b : 
Phase Diagram
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Hilbert Transform a cos q + b : 
Phase Angle Details
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Hilbert Transform a cos q + b : 
Frequency
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The Empirical Mode 
Decomposition Method 
and Hilbert Spectral 
Analysis

Sifting
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Empirical Mode Decomposition: 
Methodology : Test Data
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Empirical Mode Decomposition: 
Methodology : data and m1
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Empirical Mode Decomposition: 
Methodology : data & h1
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Empirical Mode Decomposition: 
Methodology : h1 & m2
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Empirical Mode Decomposition: 
Methodology : h3 & m4
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Empirical Mode Decomposition: 
Methodology : h4 & m5
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Empirical Mode Decomposition
Sifting : to get one IMF component
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Two Stoppage Criteria : S and SD

A. The S number :  S is defined as the  consecutive 
number of siftings, in which the numbers of zero-
crossing and  extrema are the same for these S 
siftings.

B.   SD is small than a pre-set value, where
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Empirical Mode Decomposition: 
Methodology : IMF c1
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Definition of the Intrinsic Mode 
Function (IMF)

Any function having the same numbers of
zero cros sin gs and extrema,and also having
symmetric envelopesdefined by local m a x i m a
and min ima respectively isdefined asan
Intrinsic M odeFunction( IMF ).

All IMF enjoys good HilbertTransfo
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Empirical Mode Decomposition
Sifting : to get all the IMF components
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Empirical Mode Decomposition: 
Methodology : data & r1
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Empirical Mode Decomposition: 
Methodology : IMFs
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Definition of Instantaneous 
Frequency
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Comparison between FFT and HHT
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Comparisons: 
Fourier, Hilbert & Wavelet
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Speech Analysis
Hello : Data
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Four comparsions D
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An Example of Sifting
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Length Of Day Data



5/26/2006 53

LOD :  IMF



5/26/2006 54

Orthogonality Check

n Pair-wise % 

n 0.0003
n 0.0001
n 0.0215
n 0.0117
n 0.0022
n 0.0031
n 0.0026
n 0.0083
n 0.0042
n 0.0369
n 0.0400

n Overall % 

n 0.0452
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LOD : Data & c12
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LOD : Data & Sum c11-12
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LOD : Data & sum c10-12
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LOD : Data & c9 - 12
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LOD : Data & c8 - 12
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LOD : Detailed Data and Sum c8-c12
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LOD : Data & c7 - 12
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LOD : Detail Data and Sum IMF c7-c12
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LOD : Difference Data – sum all IMFs
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Traditional View
a la Hahn  (1995) : Hilbert
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Mean Annual Cycle & Envelope: 9 
CEI Cases
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Hilbert’s View on 
Nonlinear Data
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Duffing Type Wave
Data: x = cos(wt+0.3 sin2wt)
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Duffing Type Wave
Perturbation Expansion
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Duffing Type Wave
Wavelet Spectrum
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Duffing Type Wave
Hilbert Spectrum
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Duffing Type Wave
Marginal Spectra
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Duffing Equation
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Duffing Equation : Data
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Duffing Equation : IMFs
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Duffing Equation : IMFs
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Duffing Equation : Hilbert Spectrum
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Duffing Equation : Detailed Hilbert Spectrum
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Duffing Equation : Wavelet Spectrum
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Duffing Equation : Hilbert & Wavelet Spectra
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What This Means

n Instantaneous Frequency offers a total 
different view for nonlinear data: 
instantaneous frequency with no need for 
harmonics and unlimited by uncertainty.

n Adaptive basis is indispensable for 
nonstationary and nonlinear data analysis

n HHT establishes a new paradigm of data 
analysis
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Comparisons

noyesyesHarmonics

noyesyesUncertainty

yesyesnoNon-stationary

yesnonoNonlinear 

Energy-time-
frequency

Energy-time-
frequency

Energy-
frequency

Presentation

Differentiation:
Local

Convolution: 
Regional

Convolution: 
Global

Frequency

Adaptivea prioria prioriBasis

HilbertWaveletFourier
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Current Applications

n Non-destructive Evaluation for Structural Health Monitoring 
n (DOT, NSWC, and DFRC/NASA, KSC/NASA Shuttle)

n Vibration, speech, and acoustic signal analyses
n (FBI, MIT, and DARPA)

n Earthquake Engineering
n (DOT)

n Bio-medical applications
n (Harvard, UCSD, Johns Hopkins, and Southampton, UK)

n Global Primary Productivity Evolution map from LandSat data 
n (NASA Goddard, NOAA)

n Cosmological Gravity Wave  and Planets hunting
n (NASA Goddard, and Nicholas Copernicus University, Poland)

n Financial market data analysis
n (NASA and HKUST)


