%NU_SVR Support Vector Classifier: NU algorithm % % [W,J,C] = NU_SVR(A,TYPE,PAR,C,SVR_TYPE,NU_EPS,MC,PD) % % INPUT % A Dataset % TYPE Type of the kernel (optional; default: 'p') % PAR Kernel parameter (optional; default: 1) % C Regularization parameter (0 < C < 1): expected fraction of SV % (optional; default: 0.25) % SVR_TYPE This type can be 'nu' or 'epsilon' % NU_EPS The corresponding value for NU or epsilon % MC Do or do not data mean-centering (optional; default: 1 (to do)) % PD Do or do not the check of the positive definiteness (optional; % default: 1 (to do)) % % OUTPUT % W Mapping: Support Vector Classifier % J Object identifiers of support objects % C Equivalent C regularization parameter of SVM-C algorithm % % DESCRIPTION % Optimizes a support vector classifier for the dataset A by % quadratic programming. The classifier can be of one of the types % as defined by PROXM. Default is linear (TYPE = 'p', PAR = 1). In J % the identifiers of the support objects in A are returned. % % C belogs to the interval (0,1). C close to 1 allows for more class % overlap. Default C = 0.25. % % C is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where % Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX % is supplied to the routine it will be changed to the NU_MAX. % % If C is less than some NU_MIN which depends on the overlap between % classes algorithm will typically take long time to converge (if at % all). So, it is advisable to set NU larger than expected overlap. % % Output is rescaled in a such manner as if it were returned by SVC with % the parameter C. % % % SEE ALSO (PRTools Guide) % NU_SVRO, SVO, SVC, MAPPINGS, DATASETS, PROXM % Copyright: S.Verzakov, s.verzakov@ewi.tudelft.nl % Based on SVC.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: nu_svr.m,v 1.2 2009/01/31 18:43:11 duin Exp $ function [W, J, epsilon_or_nu] = nu_svcr(a,type,par,C,svr_type,nu_or_epsilon,mc,pd) if nargin < 2 | ~isa(type,'prmapping') if nargin < 8 pd = 1; end if nargin < 7 mc = 1; end if nargin < 6 nu_or_epsilon = []; end if nargin < 5 | isempty(svr_type) svr_type = 'epsilon'; end switch svr_type case 'nu' if isempty(nu_or_epsilon) prwarning(3,'nu is not specified, assuming 0.25.'); nu_or_epsilon = 0.25; end %nu = nu_or_epsilon; case {'eps', 'epsilon'} svr_type = 'epsilon'; if isempty(nu_or_epsilon) prwarning(3,'epsilon is not specified, assuming 1e-2.'); nu_or_epsilon = 1e-2; end %epsilon = nu_or_epsilon; end if nargin < 4 | isempty(C) prwarning(3,'C set to 1\n'); C = 1; end if nargin < 3 | isempty(par) par = 1; prwarning(3,'Kernel parameter par set to 1\n'); end if nargin < 2 | isempty(type) type = 'p'; prwarning(3,'Polynomial kernel type is used\n'); end if nargin < 1 | isempty(a) W = prmapping(mfilename,{type,par,C,svr_type,nu_or_epsilon,mc,pd}); W = setname(W,['Support Vector Regression (' svr_type ' algorithm)']); return; end islabtype(a,'targets'); [m,k] = getsize(a); y = gettargets(a); % The 1-dim SVR if size(y,2) == 1 % 1-dim regression uy = mean(y); y = y - uy; if mc u = mean(a); a = a - ones(m,1)*u; else u = []; end K = a*proxm(a,type,par); % Perform the optimization: [v,J,epsilon_or_nu] = nu_svro(+K,y,C,svr_type,nu_or_epsilon,pd); % Store the results: v(end) = v(end)+uy; W = prmapping(mfilename,'trained',{u,a(J,:),v,type,par},getlablist(a),k,1); W = setname(W,['Support Vector Regression (' svr_type ' algorithm)']); %W = setcost(W,a); J = getident(a,J); %J = a.ident(J); else error('multivariate SVR is not supported'); end else % execution w = +type; m = size(a,1); % The first parameter w{1} stores the mean of the dataset. When it % is supplied, remove it from the dataset to improve the numerical % precision. Then compute the kernel matrix using proxm. if isempty(w{1}) d = a*proxm(w{2},w{4},w{5}); else d = (a-ones(m,1)*w{1})*proxm(w{2},w{4},w{5}); end % When Data is mapped by the kernel, now we just have a linear % regression w*x+b: d = [d ones(m,1)] * w{3}; W = setdat(a,d,type); end return;