%NORMAL_MAP Map a dataset on normal-density classifiers or mappings % % F = NORMAL_MAP(A,W) % % INPUT % A Dataset % W Mapping % % OUTPUT % F Density estimation for classes in A % % DESCRIPTION % Maps the dataset A by the normal density based classifier or mapping W. % For each object in A, F returns the densities for each of the classes or % distributions stored in W. For classifiers, the densities are weighted % by the class prior probabilities. This routine is automatically called for % computing A*W if W is a normal density based classifier or a mapping. % % Use W = LOGDENS(W) (or W = W*LOGDENS) if absolute densities are not % needed and a more accurate posterior probability is desired. % % SEE ALSO % MAPPINGS, DATASETS, QDC, UDC, LDC, GAUSSM, LOGDENS % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: normal_map.m,v 1.15 2005/10/18 14:07:36 duin Exp $ function F = normal_map_new(A,W) prtrace(mfilename); w = +W; % data field of W (fields: w.mean, w.cov, w.prior, w.nlab) % each of these data fields has a mean, cov, prior for separate % Gaussian components. The nlab field assigns each component % to a class. [k,c] = size(W); % c is number of classes % DEG = 1 indicates a common cov. matrix and DEG = 2 - separate cov. matrices. deg = ndims(w.cov)-1; U = w.mean; G = w.cov; p = w.prior; if (abs(1-sum(p)) > 1e-6) error('Class or component probabilities do not sum to one.') end lablist = getlab(W); [m,ka] = size(A); if (ka ~= k), error('Feature sizes of the dataset and the mapping do not match.'); end n = size(U,1); % Number of components. F = zeros(m,n); % Gaussian densities for each component to be computed. if (deg == 1) H = G; if (rank(H) < size(H,1)) prwarning(2,'Singular case, pseudo-inverse of the covariance matrix is used.'); E = real(pinv(H)); else E = real(inv(H)); end end %detect circular features cFeaturesDomain = getfeatdom(A); DirectionalFeatures = []; for ii = 1:length(cFeaturesDomain) if(~isempty(cFeaturesDomain{ii})) DirectionalFeatures = [DirectionalFeatures ii]; end end iCantFeatures = ka; aa_matrix = +A; NotDirectionalFeatures = setdiff(1:iCantFeatures, DirectionalFeatures); bNotNaN = ~any(isnan( aa_matrix ),2); iCantElementos = sum(bNotNaN); % Loop over components. for i=1:n % Shift A such that the mean lies at the origin. if( ~isempty(NotDirectionalFeatures) ) X(bNotNaN,NotDirectionalFeatures) = aa_matrix(bNotNaN,NotDirectionalFeatures) - ones(iCantElementos,1)*U(i,NotDirectionalFeatures); end if( ~isempty(DirectionalFeatures) ) for ii = DirectionalFeatures iAux1 = aa_matrix(bNotNaN, ii ); iAux2 = repmat(U(i,ii), iCantElementos,1); iAux3 = [ iAux1 - iAux2, 2*pi + iAux1 - iAux2, iAux1 - 2*pi - iAux2 ]; [dummy, iMinIndex] = min(abs(iAux3), [], 2); iMinIndex = sub2ind(size(iAux3),1:size(iAux3,1),iMinIndex'); X(bNotNaN,ii) = iAux3(iMinIndex); end end if (deg == 2) H = G(:,:,i); if (rank(H) < size(H,1)) prwarning(1,'Singular case, pseudo-inverse of the covariance matrix is used.'); E = real(pinv(H)); else E = real(inv(H)); end end % Gaussian distribution for the i-th component. Take log of density to preserve tails F(:,i) = -0.5*sum(X'.*(E*X'),1)' - (sum(log(real(eig(H)+1e-16)+realmin)) + k*log(2*pi))*0.5; if (getout_conv(W) ~= 2) % take log of density to preserve tails F(:,i) = exp(F(:,i)); end end if isfield(w,'nlab') % For mixtures of Gaussians. Relates components to classes nlab = w.nlab; cc = max(w.nlab); else nlab = [1:c]; cc = c; end if (getout_conv(W) == 2) Cmax = max(F(:)); % scale to gain accuracy in the tails F = F - Cmax; end FF = zeros(m,cc); % Loop over true classes. Weight the probabilities by the priors. for j = 1:cc J = find(nlab == j); if (getout_conv(W) == 2) % take log of density to preserve tails % difficult to get this right for MOGs, and moreover, probably not of % much help. Anyway, we give it a try. FF(:,j) = exp(F(:,J))*w.prior(J)'; % like in parzen_map, use in tails just largest component L = find(FF(:,j) <= 1e-300); N = find(FF(:,j) > 1e-300); if ~isempty(L) [FM,R] = max(F(L,J),[],2); FF(L,j) = FM + w.prior(R)'; end if ~isempty(N) FF(N,j) = log(FF(N,j)); end else FF(:,j) = F(:,J) * w.prior(J)'; end end if (getout_conv(W) == 2) FF = exp(FF); else FF = FF + realmin; % avoid devision by 0 in computing posterios later end if isdataset(A) F = setdata(A,FF,lablist); else F = FF; end return;