%QDC Quadratic Bayes Normal Classifier (Bayes-Normal-2) % % [W,R,S,M] = QDC(A,R,S,M) % W = A*QDC([],R,S) % % INPUT % A Dataset % R,S Regularization parameters, 0 <= R,S <= 1 % (optional; default: no regularization, i.e. R,S = 0) % M Dimension of subspace structure in covariance matrix (default: K, % all dimensions) % % OUTPUT % W Quadratic Bayes Normal Classifier mapping % R Value of regularization parameter R as used % S Value of regularization parameter S as used % M Value of regularization parameter M as used % % DESCRIPTION % Computation of the quadratic classifier between the classes of the dataset % A assuming normal densities. R and S (0 <= R,S <= 1) are regularization % parameters used for finding the covariance matrix by % % G = (1-R-S)*G + R*diag(diag(G)) + S*mean(diag(G))*eye(size(G,1)) % % This covariance matrix is then decomposed as G = W*W' + sigma^2 * eye(K), % where W is a K x M matrix containing the M leading principal components % and sigma^2 is the mean of the K-M smallest eigenvalues. % % % % The use of soft labels is supported. The classification A*W is computed by % NORMAL_MAP. % % If R, S or M is NaN the regularisation parameter is optimised by REGOPTC. % The best result are usually obtained by R = 0, S = NaN, M = [], or by % R = 0, S = 0, M = NaN (which is for problems of moderate or low dimensionality % faster). If no regularisation is supplied a pseudo-inverse of the % covariance matrix is used in case it is close to singular. % % EXAMPLES % See PREX_MCPLOT, PREX_PLOTC. % % REFERENCES % 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd % edition, John Wiley and Sons, New York, 2001. % 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons, % New York, 2002. % % SEE ALSO % MAPPINGS, DATASETS, REGOPTC, NMC, NMSC, LDC, UDC, QUADRC, NORMAL_MAP % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: qdc.m,v 1.7 2008/03/20 09:25:10 duin Exp $ function [w,r,s,dim] = qdc_new1(a,r,s,dim) prtrace(mfilename); if (nargin < 4) prwarning(4,'subspace dimensionality M not given, assuming K'); dim = []; end if (nargin < 3) | isempty(s) prwarning(4,'Regularisation parameter S not given, assuming 0.'); s = 0; end if (nargin < 2) | isempty(r) prwarning(4,'Regularisation parameter R not given, assuming 0.'); r = 0; end if (nargin < 1) | (isempty(a)) % No input arguments: w = prmapping(mfilename,{r,s,dim}); % return an untrained mapping. elseif any(isnan([r,s,dim])) % optimize regularisation parameters defs = {0,0,[]}; parmin_max = [1e-8,9.9999e-1;1e-8,9.9999e-1;1,size(a,2)]; [w,r,s,dim] = regoptc(a,mfilename,{r,s,dim},defs,[3 2 1],parmin_max,testc([],'soft'),[1 1 0]); else % training islabtype(a,'crisp','soft'); % Assert A has the right labtype. isvaldfile(a,2,2); % at least 2 objects per class, 2 classes [m,k,c] = getsize(a); % If the subspace dimensionality is not given, set it to all dimensions. if (isempty(dim)), dim = k; end; dim = round(dim); if (dim < 1) | (dim > k) error ('Number of dimensions M should lie in the range [1,K].'); end [U,G] = meancov_new(a); % Calculate means and priors. pars.mean = +U; pars.prior = getprior(a); % Calculate class covariance matrices. pars.cov = zeros(k,k,c); for j = 1:c F = G(:,:,j); % Regularize, if requested. if (s > 0) || (r > 0) F = (1-r-s) * F + r * diag(diag(F)) +s*mean(diag(F))*eye(size(F,1)); end % If DIM < K, extract the first DIM principal components and estimate % the noise outside the subspace. if (dim < k) dim = min(rank(F)-1,dim); [eigvec,eigval] = eig(F); eigval = diag(eigval); [dummy,ind] = sort(-eigval); % Estimate sigma^2 as avg. eigenvalue outside subspace. sigma2 = mean(eigval(ind(dim+1:end))); % Subspace basis: first DIM eigenvectors * sqrt(eigenvalues). F = eigvec(:,ind(1:dim)) * diag(eigval(ind(1:dim))) * eigvec(:,ind(1:dim))' + ... sigma2 * eye(k); end pars.cov(:,:,j) = F; end w = normal_map_new(pars,getlab(U),k,c); w = setcost(w,a); cFeaturesDomain = getfeatdom(a); w = setuser(w,cFeaturesDomain); end w = setname(w,'Bayes-Normal-2'); return;