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Abstract Inducing a switch in neuronal state using energy
optimal stimuli is relevant to a variety of problems in neuro-
science. Analytical techniques from optimal control theory
can identify such stimuli; however, solutions to the optimiza-
tion problem using indirect variational approaches can be
elusive in models that describe neuronal behavior. Here we
develop and apply a direct gradient-based optimization algo-
rithm to find stimulus waveforms that elicit a change in
neuronal state while minimizing energy usage. We analyze
standard models of neuronal behavior, the Hodgkin-Huxley
and FitzHugh-Nagumo models, to show that the gradient-
based algorithm: 1) enables automated exploration of a wide
solution space, using stochastically generated initial wave-
forms that converge to multiple locally optimal solutions;
and 2) finds optimal stimulus waveforms that achieve a phys-
iological outcome condition, without a priori knowledge of
the optimal terminal condition of all state variables. Analysis
of biological systems using stochastically-seeded gradient
methods can reveal salient dynamical mechanisms underlying
the optimal control of system behavior. The gradient algo-
rithm may also have practical applications in future work, for
example, finding energy optimal waveforms for therapeutic
neural stimulation that minimizes power usage and diminishes
off-target effects and damage to neighboring tissue.
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1 Introduction

There has been recent interest in establishing methods that
utilize external electrical stimulation for controlling patholog-
ical neuronal activities in neurological disorders, for example,
Parkinsonian tremor (Lozano 2010) and epileptic seizures
(Loddenkemper and Pan 2001). Determining the minimal
effective stimulus for such control is a key practical question
because energetic optimization of the stimulus will decrease
power usage and prolong battery life, as well as diminish off-
target effects and damage to neighboring regions.

Finding optimal stimulus waveforms to control biological
systems poses interesting computational challenges.
Traditionally, optimization of signals has been conducted
analytically using calculus of variations (Gelfand and Fomin
2000), in which an optimal functional is derived and solved as
a boundary-value problem, using the shooting method
(Osborne 1969) or the Newton–Raphson method (Ypma
1995). These techniques, which have been applied to neuronal
models (Forger et al. 2011; Forger and Paydarfar 2004),
requires an initial guess that seeds an algorithm used to solve
the boundary-value problem. Finding an initial guess that
converges to a solution can be difficult in mathematical
models with steep nonlinearities of multiple state variables.
Another important limitation for solving optimal functionals
as a boundary value problem is the need for a priori knowl-
edge of the optimal endpoint of all state variables.
Optimization problems are often defined by a single outcome
measure (e.g., achieving a voltage threshold for an action
potential) and the optimal endpoint for all state variables
may be unknown. Finding a global optimum therefore would
require solving the boundary value problemmultiple times for
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all possible endpoints that include the desired outcome mea-
sure (Forger et al. 2011).

Gradient-based optimization methods (Bryson and Ho
1975; Kelley 1962) offer an alternative computational ap-
proach for variational analysis that retains the complete model
description and circumvents the need for solving a boundary-
value problem. Gradient-based algorithms solve the optimiza-
tion problem directly without first deriving a functional with
defined boundary conditions. Recent success using this ap-
proach has been achieved for solving complex control prob-
lems in mechanics (Aghababa et al. 2012; Golfetto et al. 2012;
Raivo 2000), epidemiology (Gupta and Rink 1973), game
theory (Doležal 1978), kinetics (Lee 1964) and immunology
(Joshi 2002; Kepler and Perelson 1993; Kirschner et al. 1997).

To our knowledge, gradient algorithms have not been
applied to problems in computational neuroscience, and here
we ask if such an approach might be useful for identifying
minimal effective stimuli for controlling neuronal activity. As
an initial analysis, we focus on waveforms that induce a single
action potential in a classical monostable neuron (Hodgkin
and Huxley 1952) or induce or suppress repetitive firing in a
bistable neuron (FitzHugh 1961; Nagumo et al. 1962).
Furthermore, we develop and apply a stochastic seeding ap-
proach to the gradient algorithm in order to explore more fully
the solution space to determine globally optimal solutions as
opposed to just locally optimal solutions. Our results provide
insight into how optimal control of neuronal activity is strong-
ly influenced by temporal constraints of the stimulus wave-
form and the terminal conditions that define the outcome
measure.

The paper proceeds as follows. In Section 2, we outline the
gradient-based algorithm as well as its implementation for
both the Hodgkin-Huxley and the Fitzhugh-Nagumo models.
Online Resources 1 and 2 provide a detailed mathematical
basis for the algorithm. Section 3 describes the results,
highlighting the importance of broad exploration of the solu-
tion space using stochastically generated seeds. Section 4
discusses the advantages and limitations of the gradient algo-
rithm and compares it to other previously used techniques.

2 Methods

2.1 First-order gradient algorithm

The derivation and theoretical framework of the first-order
gradient optimization problem is detailed in Online Resource
1. Here we provide a step-by-step outline of how the algorithm
is implemented. To summarize, this algorithm begins with an
initial estimate of the optimal stimulus and iteratively chooses
a better stimulus based on the first-order gradient, or slope, of
the system’s response. This is done by calculating how the
changes in the stimulus will affect the performance index as

well as the error in terminal conditions. To calculate the error
in terminal conditions, the algorithm runs the system’s re-
sponse to the stimulus and compares the actual state at the
terminal point with the desired terminal state.

As we will show, this algorithm is very robust to the initial
estimate of the optimal stimulus, enabling us to use randomly
generated stimuli to search across a larger solution space. We
describe the gradient algorithm below, which is based on the
formalisms developed by Bryson and Ho (1975).

Given a nonlinear system of equations:

ẋ ¼ f x tð Þ; u tð Þ; t½ � for to≤ t≤ t f

where x (t) describes an n-dimensional system and u (t)
describes an m-dimensional external stimulus to the system,
and the system’s initial conditions x0, we seek an optimal
stimulus, u (t), that minimizes the scalar performance index,
J, such that:

J ¼
Z
to

t f

L x tð Þ; u tð Þ; t½ �dt;

where L[x(t),u(t),t] is a performance metric. The perfor-
mance metric can be any function of both the system and the
stimulus. In our examples, we will be using L2-norm as the
performance metric to calculate the energy of the stimulus. In
examining exogenous stimulation, this metric is relevant to
the power used by the stimulus. This means that our perfor-
mance metric is:

L x tð Þ; u tð Þ; t½ � ¼ u2

This metric can be replaced with any other mathematical
expression meaningful to any other optimization parameter.
For instance, in endogenous stimulation, one may be more
interested in ATP consumption as opposed to the L2-norm.
The performance metric could be rewritten to accommodate
this.

Finally, the algorithm is constrained by q terminal condi-
tions of the form:

x t f
� � ¼ x f :

The algorithm proceeds as follows:

1. Estimate the stimulus variable, u(t). We used a uniform
random number generator to specify the initial stimulus
values for each time step from t0 to tf.
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2. Integrate the state variables x (t) forward with the given
initial conditions and the stimulus generated in Step 1.

3. Determine the influence functions p (t) and R (t) by
backward integration of

ṗT ¼ −
∂L
∂x

−pT
∂ f
∂x

Ṙ ¼ −
∂ f
∂x

� �T
R

using the values from the state calculated from Step 2.
Here, p (t) is an n-by-1 dimensional matrix, while R (t) is
an n-by-q dimensional matrix. In these calculations, p (t)
represents the strength of influence changes to the stimu-
lus will have on the performance index, while R (t)
represents the strength of influence changes to the stimu-
lus will have on the error in terminal conditions.

These two influence functions describe how changes
in the stimulus will affect the performance index and the
distance from the expected terminal conditions.

4. Simultaneously with Step 3, compute

Q ¼ k

Z
t0

t f

RT ∂ f
∂u

∂ f
∂u

� �T
Rdt

g ¼ k

Z
t0

t f

RT ∂ f
∂u

∂ f
∂u

� �T
pþ ∂L

∂u

� �T( )
dt

Q and g are intermediate variables used to simplify the
equations in step 5. Here, Q is a q-by-q dimensional
matrix while g is a q-by-1 dimensional matrix. The vari-
able k is a scaling factor that describes how large of a step
size should be taken. We discuss how to choose this value
at the end of the algorithm.

5. Using the results from the state variables in Step 2, calcu-
late

v ¼ −Q−1 δx t f
� �þ g

� �

δx t f
� � ¼ ε x t f

� �
−x f

� �
:

Here, v, an n-by-1 dimensional matrix, becomes a
multiplier that balances the two different influence func-
tions p (t) and R (t). As v becomes larger, the algorithm

puts more weight in the effect of the influence factor R (t)
as compared to the influence factor p (t).

The variable δx is proportional to the distance between
the actual terminal state due to the estimated stimulus and
the desired terminal conditions that have been defined.
The variable ε is another scaling factor that describes how
large the step size is. The larger the scaling factor, the
larger the step will be in the direction of the gradient
towards the optimal solution.

6. Repeat steps 1 to 5 with an improved estimate of the
stimulus variable using

δu ¼ −k
∂ f
∂u

� �T
pþ vR½ � þ ∂L

∂u

� �T( )

This entire process continues for either a predefined
number of iterations, or until the standard deviation of δJ
and δu over a set number of iterations has fallen below a
specified threshold, indicating that the algorithm has con-
verged to a solution.

It is interesting to note that this algorithm weighs and
manages the weights of both the performance index as well
as how closely the estimated stimulus fulfills the terminal
conditions. As seen in Step 5, the further away the terminal
states of the system due to the estimated stimulus is from the
terminal conditions, the larger v becomes. Thus more weight
is put on the effect of the stimulus with regards to fulfillment
of the terminal conditions, R (t) as opposed to the effect of the
stimulus on improving the performance index, p (t).

Some trial and error may be needed with regards to how to
choose scaling factors for both k and ε. The predicted decrease
in the performance index, δJ, can be compared to actual
decrease in performance index. If the difference is large, the
scaling factor can be decreased. If the difference is small
between predicted versus actual, the scaling factor can be
increased.

All of the simulation and algorithmic work was carried out
inMatlab (TheMathWorks Inc., Natick,MA, USA). Our code
is publically accessible on the Internet at PhysioNet (http://
physionet.org).

2.2 Hodgkin-Huxley model

One of the classic computational models regarding excitable
systems is the Hodgkin-Huxley neuron model (Hodgkin and
Huxley 1952). The model is a four dimensional system that
captures the ionic mechanisms underlying the generation of an
action potential. The Hodgkin-Huxley model is defined as
follows:

CV̇ ¼ −120m3h V−115ð Þ−36n4 V þ 12ð Þ−0:3 V−10:613ð Þ−u
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ṁ ¼ −m αm Vð Þ þ βm Vð Þð Þ þ αm Vð Þ

ṅ ¼ −n αn Vð Þ þ βn Vð Þð Þ þ αn Vð Þ

ḣ ¼ −h αh Vð Þ þ βh Vð Þð Þ þ αh Vð Þ

αm Vð Þ ¼ 0:1ϕ 25−Vð Þ
e0:1 25−Vð Þ−1

; βm Vð Þ ¼ 4ϕe−V=80

αn Vð Þ ¼ 0:01ϕ 10−Vð Þ
e0:1 10−Vð Þ−1

; βn Vð Þ ¼ 0:125ϕe−V=80

αh Vð Þ ¼ 0:07ϕe−V=20; βh Vð Þ ¼ ϕ

e0:1 30−Vð Þþ1

where V is the membrane voltage (mV), m, n, and h represent
dimensionless quantities associated with sodium channel ac-
tivation, potassium channel activation, and sodium channel
inactivation respectively, and u represents the exogenous stim-
ulation we are looking to input into the system (μA/cm2). The
parameter ϕ is based on the ambient temperature, which we
have set to 1.5. The parameter C is the capacitance of the
membrane, which we set at (1 μF/cm2). The Hodgkin-Huxley
model that we have defined here is monostable; the membrane
is quiescent, firing an action potential only when it is elicited
by the input stimulus.

By setting each of the differentials as well as the stimulus to
0, we are able to find the resting state of the Hodgkin-Huxley
model. We found this resting state to be V=0.0026 mV, m=
0.0529, n=0.3177 and h=0.596.

Using the gradient algorithm, we can determine what the
optimal stimulus should be in order to cause an action poten-
tial from the resting state using the least amount of energy as
determined by the performance index mentioned earlier, L2-
norm, which we measured in μJ/cm2. The standard model
measures current per unit area of membrane (1 cm2).

We generated our initial estimate by choosing random
values at intervals of 0.1 milliseconds. Each random value
was chosen from a uniform distribution from -1 μA/cm2 to
1 μA/cm2. These initial estimates were multiplied by a scaling
factor to allow for different stimulus strengths. To increase the

chance that we find the global optimal, we ran the algorithm
10 times with a different randomly generated stimulus.

We define the terminal condition as the voltage above
which an action potential is guaranteed:

V t f
� � ¼ 12 mV:

The gradient algorithm allows us the flexibility to define
the terminal conditions for only one of the four state variables.
This is useful because it allows us to broaden the search for
stimuli that achieve the outcome (an action potential) without
artificially restricting ourselves to solutions that may not be
optimal. For our purposes, we only require the stimulus to
trigger an action potential irrespective of the values of m, n,
and h. Placing constraints on those values could restrict the
search to a solution that is not optimal.

Another consideration for setting the terminal condition is
whether the first order gradient converges to desired end-
point. For example, if we set the terminal condition of V to
be near the peak of the action potential (e.g. V (tf)=95 mV),
the algorithm has a very difficult time converging to a solution
that ends at the peak of the action potential. This is due to the
extreme nonlinearity of the state variables in that particular
region of the action potential. A small change in the stimulus
results in either a better performance index or a lower error in
terminal conditions. Because we are using a first-order gradi-
ent algorithm, we would often end up either over- or under-
stepping the stimulus, thereby causing a failure in conver-
gence. We found that by setting the terminal condition to be
lower, we were both able to guarantee the desired outcome (an
action potential) and convergence of the gradient algorithm
towards a solution.

2.3 Implementing the gradient algorithm
for the Hodgkin-Huxley model

Detailed derivations of equations for the gradient algorithm
are included in Online Resource 2. We set the algorithm to run
for 100 iterations, with k=0.1 and ε=0.5. To generate the
initial stimulus, a uniform distribution random number gener-
ator with a range of -1 to 1 was used to generate the stimulus
amplitudes at every 0.1 ms interval for a total of 25 millisec-
onds. Because of the stiffness of the Hodgkin-Huxley equa-
tions, we used MATLAB’s differential equation solver,
ode113 (MathWorks; Natick, MA).

2.4 FitzHugh-Nagumo model

While the transition from quiescence to a single action poten-
tial is interesting, many biological systems exist in states that
are oscillatory in nature. In a recent study, Paydarfar et al.
(2006) showed that small oscillatory stimuli can be used to
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induce a state transition in a bistable system. While, we could
theoretically model the Hodgkin-Huxley model as a bistable
system by adding a sufficiently large exogenous depolarizing
persistent current, previous studies have shown that the squid
axon, which is the basis for the Hodgkin Huxley model, fails
to exhibit repetitive firing under the condition of a persistent
depolarizing current clamp (Clay et al. 2008). Furthermore,
our preliminary analysis suggested that the first-order gradient
algorithm does not readily converge because of the sensitivity
of the Hodgkin-Huxley system, specifically the terminal
point, even to small changes in the stimulus. To change the
stimulus by a small amount would cause the system to over-
shoot the terminal condition, causing the gradient algorithm to
attempt to reverse the problem, but overshooting the terminal
condition again in the opposite direction.

We found the FitzHugh-Nagumo system to be much more
lenient as a bistable model. The FitzHugh-Nagumo model is a
two dimensional system that has been used to describe excit-
ability in neurons and has served as a model system for
bistable behavior (Alon 2006; FitzHugh 1961; Forger and
Paydarfar 2004; Glass 2001; Nagumo et al. 1962; Paydarfar
and Buerkel 1995; Winfree 2001).

The FitzHugh-Nagumo model (FitzHugh 1961; Nagumo
et al. 1962) is defined as follows:

ẋ1 ¼ c x2 þ x1−
x13

3
−r

� �
þ u

ẋ2 ¼ −
1

c
x1−aþ bx2ð Þ

This model is unitless, but one can show that the FitzHugh-
Nagumo model is a two-dimensional reduction of the
Hodgkin-Huxley equations (FitzHugh 1961). With regards
to neuronal excitability, x1 is analogous to Hodgkin-
Huxley’s V and m, while x2 is analogous to Hodgkin-
Huxley’s h and n states (FitzHugh 1961). The variable u is
analogous to current stimulation, which can be in the form of
an endogenous persistent current or an exogenous input stim-
ulus. In order for the system to exhibit bistability (quiescence
and repetitively firing), we have chosen parameters as previ-
ously defined (Paydarfar and Buerkel 1995), a=0.7, b=0.8,
c=3.0, and r=0.342. In this particular configuration, the sys-
tem gravitates, when there is no stimulation, towards one of
two states: quiescence or repetitive firing. The repetitive firing
state is an oscillatory limit cycle, while the quiescent state is a
fixed point. The minimum value of x1 is the equivalent of the
peak of an action potential in the FitzHugh-Nagumo model.
We wanted to determine the optimal stimulus to both induce
and suppress repetitive firing in a bistable system. Thus, we

used the gradient algorithm to calculate the optimal stimulus
when transitioning from the fixed point to the oscillatory limit
cycle, and vice versa.

In order to systematically explore the entire limit cycle in
the repetitive firing state, we captured a set of 68 points (RF1,
RF2… RF68) dispersed around the limit cycle.We determined
this set of 68 points by allowing the system to reach steady
state in MATLAB and recording the values of x1 and x2 as
returned by the Runga-Kutta differential equation solver,
ode45. To find the optimal stimulus from quiescence to the
repetitive firing state, we set up 68 computational experi-
ments, each starting where xo is equal to quiescent point and
ending at xf=RFn where n lies between 1 and 68. Similarly to
find the optimal stimulus from the repetitive firing state to
quiescence state, we set up 68 computational experiments,
each starting with xo=RFn where n lies between 1 and 68,
and ending at xf equal to the quiescent point. In order to define
the phase around the limit cycle, we normalize the time at
which each of the 68 points occur so that RF1 occurs at phase
ϕ=0 and RF68 occurs at phase ϕ=1. Figure 1 shows a graph of
all the 68 points, with some of the phases marked off. We ran
each computational experiment 10 times to again increase the
probability of finding the global optimal for each phase.

2.5 Implementing the gradient algorithm
for the FitzHugh-Nagumo model from quiescence
to repetitive firing

A detailed derivation of the equations for the gradient algo-
rithm is included in Online Resource 2. We set our scaling
factors to be k=0.5 and ε=0.5. To generate the initial stimulus,
a uniform distribution random number generator with a range
of -1 to 1 was used to generate the stimulus amplitudes at
every 0.1 ms interval for a total of 30 milliseconds. Because

-0.5

0

0.5

1

1.5

-2 0 2

x 2

x1

=0

=0.25

=0.5=0.75

Fig. 1 Plot of the 68 points chosen to represent the limit cycle in the
FitzHugh-Nagumo model. The phase values are normalized by time so
that 0 and 1 are both at the “peak of the action potential” which occurs
when x1 is at its minimal value. A few other representative phase values
are shown to show the time progression around the limit cycle
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we were dealing with a bistable system, we wanted to ensure
that the system did not revert back to the quiescent state. As
such, we observed the system’s response for a total of 100 mil-
liseconds, 70 milliseconds after the stimulus had completed.
We verified in each of our results that the range of x1 values
remained larger than 3.5 units which was the range of the
repetitive firing steady state in the last 20 milliseconds of our
100 millisecond system response. Because the FitzHugh-
Nagumo model was less stiff, we were able to use
MATLAB’s ode45 differential equation solver. In this appli-
cation of finding transitions from quiescence to repetitive
firing, we are examining the phase at which the stimulus
terminates on the limit cycle.

We found that depending on which of the 68 points we
were using as the terminal condition, the gradient algorithm
would take a variable number of iterations to converge to a
solution. Thus, instead of specifying a threshold, we terminat-
ed the algorithm when the standard deviation of the last 20
iterations of δJ was less than 0.0001 and δu was less than 0.1.
For the sake of time, we terminated the gradient algorithm
after 1,000 iterations if it had not yet converged.

2.6 Implementing the gradient algorithm
for the FitzHugh-Nagumo model from repetitive firing
to quiescence

A detailed derivation of the equations for the gradient algo-
rithm is included in Online Resource 2. We set our scaling
factors to be k=0.5 and ε=0.5. To generate the initial stimulus,
a uniform distribution random number generator with a range
of -1 to 1 was used to generate the stimulus amplitudes at
every 0.1 ms interval for a total of 8 milliseconds. In order to
develop results comparable to previous literature (Forger and
Paydarfar 2004), we’ve chosen a stimulus duration of 8 milli-
seconds, which is less than the limit cycle period (12.84 ms).
In this application of finding transitions from repetitive firing
to quiescence, we are examining the phase at which the
stimulus begins from the limit cycle.

Because we were dealing with a bistable system, we
wanted to ensure that the system did not revert back to the
repetitive firing state. As such, we observed the system’s
response for a total of 100 milliseconds, 92 milliseconds after
the stimulus had completed. We verified in each of our results
that the range of x1 values remained smaller than 3.5 units
which was the range of the repetitive firing steady state in the
last 20 milliseconds of our 100 millisecond system response.
Again, because the FitzHugh-Nagumo model was less stiff,
we were able to use MATLAB’s ode45 differential equation
solver.

Like we did for determining convergence when finding the
optimal stimulation from quiescence to repetitive firing, we
terminated the algorithm when the standard deviation of the

last 20 iterations of δJ was less than 0.0001 and δu was less
than 0.1, with a maximum number of iterations set at 1,000.

3 Results

In order to achieve a better understanding of how the gradient
algorithm performs, its advantages and its limitations, we
applied it to three distinct scenarios: the triggering of a single
action potential in a monostable system, the initiation of
repetitive firing in a bistable system and the suppression of
repetitive firing in a bistable system. We proceeded with two
of the most classic neuronal model systems: the Hodgkin-
Huxley model as our monostable system and the FitzHugh-
Nagumo system as the bistable system. While the FitzHugh-
Nagumo system has been used mainly in neuronal systems, it
also has broader applications in other biological systems
(Aliev and Panfilov 1996; Kawato and Suzuki 1980).

3.1 Hodgkin-Huxley model of neuronal excitation

As we can see from Fig. 2, the gradient algorithm begins with
a randomly generated stimulus, and within a few generations,
the rough shape of the optimal stimulus is seen. Within 30
iterations, the optimal stimulus is revealed, with little further
improvement in L2-norm following subsequent iterations.
One interesting observation we noted is that the first iteration
often produces a stimulus with a poorer performance index.
This is due to the fact that because we are randomly generating
the stimulus, it most likely fails to meet the terminal condition.
Thus, the algorithm first changes the stimulus to be closer to
meeting the terminal condition, before it begins improving the
performance index.

Figure 3 shows the stimulus waveform of gradient algo-
rithm at 100 iterations and the action potential it caused. Note
that the membrane potential V in Fig. 3 is offset from the HH
model by -60 mV, which is also consistent with modern usage
of the Hodgkin-Huxley model. The original model arbitrarily
set the resting potential at 0 mV, while neurons actually rest in
a hyperpolarized state. The result of the gradient algorithm
had an L2-norm of 15.5 μJ/cm2. As a point of comparison, we
used a constant amplitude 25-ms stimulus and reduced the
amplitude down until it just barely created an action potential.
We found that using an amplitude of 2.255 μA/cm2, the
neuron would fire an action potential at 11 ms. We then
reduced the duration of the stimulus until it no longer fired
an action potential, and found that when the amplitude was
2.255 μA/cm2 and the duration was 9.7 ms, the neuron would
just barely fire an action potential. The L2-norm of this barely
supra-threshold rectangular pulse was 49 μJ/cm2. Thus, the
waveform generated using this technique showed a large
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reduction of energy necessary for causing the neuron to fire a
single action potential.

As we sought to gain a better understanding of the algo-
rithm’s application, we examined the effect that stimulus
duration would affect the optimal stimulus’ L2-norm. We
changed tf, but kept the rest of the system parameters the
constant. This meant that not only did the stimulus decrease
in duration, the action potential occurred sooner as well.
Figure 4 shows the plot illustrating how the stimulus duration
affected the optimal stimulus’ L2-norm. As we can see from
the plot, when the stimulus duration was increased, smaller
L2-norms could be achieved, up until a certain point. Beyond
25 milliseconds, the improvements in L2-norm are minimal.

Figure 5 shows the shape of the optimal waveforms under
the different conditions of when the system crosses the spec-
ified threshold. It is interesting to note that when an action
potential is desired earlier (less than 7 ms), the optimal wave-
form is monophasic; whereas action potential timings that are
later (more than 7 ms) are optimally achieved with biphasic
waveforms. In a recent study, Clay et al. (2012) explained that
the hyperpolarization phase of the optimal stimuli is useful for
removing a small amount of sodium inactivation, thus
allowing for a less energetic depolarizing phase to still elicit
an action potential. This figure shows that this is indeed true,
but only when the desired time to action potential is long
enough. If the time to action potential is shorter, the
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Fig. 2 Gradient algorithm shapes
random stimuli towards an
optimal waveform. Here we show
the progression of solutions as the
gradient algorithm begins with a
white-noise stimulus and finds the
most energetically efficient
solution over 100 iterations. The
top panel shows the L2-norm
trajectory over 100 iterations. The
six panels show the evolving
waveform at the 1st, 5th, 10th,
20th, and 30th iteration of the
algorithm. There is very little
improvement between the 30th
and the 100th iteration as seen in
the L2-norm trajectory (top
panel). By convention, positive
current is depolarizing
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hyperpolarization phase is reduced, and it disappears all to-
gether if the time to action potential is too short. From a design
perspective, this may suggest that in neuronal systems that
require rapid elicitation of an action potential, excitatory post-
synaptic currents would be much more prevalent than in
neuronal systems that are more amenable to delayed elicita-
tion of action potentials.

We examined the robustness of the gradient algorithm to
randomly generated initial estimates of the optimal stimulus.
As such, we created a set of randomly generated seeds with
varying amplitudes (at 0.1 ms resolution), and tracked for each
iteration both the L2-norm and the distance the calculated
endpoint was from the desired terminal state. Figure 6 shows
a plot of L2-norm trajectory over the first 30 iterations. While
each trajectory started at different places, they all ended at
solutions with the roughly the same L2-norm. There is some
variation in the error due to terminal conditions, but the system
is extremely sensitive, and so any small changes in the stim-
ulus will result in small variations in the distance of the end
point to the terminal conditions.

3.2 The FitzHugh-Nagumo model: quiescence to repetitive
firing

The L2-norm values for all 10 runs of each of the 68 compu-
tational studies are shown in Fig. 7. For each of these runs, the
system starts at the quiescent fixed point and terminates at a
specified phase, ϕ, as defined previously. The gradient algo-
rithm failed to converge within the set limit of 1,000 iterations
for some of the runs, and we have marked them accordingly.
This plot reveals a clustering of low L2-norm values around
ϕ=0.58, a lack of convergence in the range 0.05<ϕ<0.5, and
a multiplicity of solutions where ϕ>0.9 or ϕ<0.05.

To begin, we notice that the optimal transition from the
quiescent state to the repetitive firing state is when the termi-
nal condition is around ϕ=0.58. In fact, there is a small range,
0.55<ϕ<0.65 where the gradient algorithm produces consis-
tently low L2-norm values. This shows a particular trajectory
with the most ideal “entrance” into the repetitive firing state
from the quiescent state. At these phases, there appears to be
only one extrema in the solution space.

Secondly, there is a large range of phases, in which the
gradient algorithm is unable to converge to a solution with the
predetermined number of iterations. We increased the number
of iterations to 5,000, but the gradient algorithm still failed to
converge to a solution in the range 0.05<ϕ<0.4, which cor-
responds to rapid changes in the state variables during the
action potential. Because we are using a first-order gradient
algorithm, as the algorithm gets closer to those solutions,
small changes in the stimulus can cause the algorithm to
overshoot its estimation of the optimal, leading to loss of
convergence. We believe that a solution exists because the
terminal condition is on a steady state limit cycle. If we took
the solution when ϕ=0.58 and padded the end with zeroes, we
should be able to find a stimulus that takes us to a phase angle
between 0.05 and 0.4. This suggests that perhaps the set of
initial estimates that allow for convergence to a local optima

Fig. 3 The optimal stimulus derived from the gradient algorithm (top)
triggers a single action potential in the Hodgkin-Huxley model (bottom)
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Fig. 4 Longer stimulus duration provides for more energetically efficient
stimulus. Once the stimulus duration extends past a certain point, there is
no further improvement in energy efficiency

Fig. 5 The optimal waveforms change from a monophasic stimulus to a
biphasic stimulus as the amount of time to action potential increases
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solution, also known as the region of convergence, is small
compared to the region of convergence we have seen for the
mono-stable Hodgkin-Huxley or the bistable FitzHugh-
Nagumo when the terminal condition is within the range of
0.55<ϕ<0.65.

Finally, we notice multiple local optima found when the
terminal condition on the limit cycle is close to the peak of x1
(ϕ<0.05, and ϕ>0.9). Fig. 8 shows an example of two stim-
ulus waveforms that resulted in a transition from quiescence to
repetitive firing using the exact same starting and ending
points. As illustrated here, this multiplicity occurs because
the terminal condition is on an oscillatory limit cycle. In this
example, two distinct optimal stimuli result because there can
be a multiplicity of subthreshold oscillations before the trajec-
tory jumps to the stable limit cycle. In this example, the
algorithm converged to two optimal stimulus waveforms that
caused either one or three subthreshold oscillations before
inducing a jump to the limit cycle. The stimulus inducing a
jump after one subthreshold oscillation has shorter duration
and larger amplitude, compared to the optimal stimulus that
transitions more gradually. This finding matched one of the
results we found in the Hodgkin-Huxley model: If we want to
transition states quicker, more energy is required.

To provide a comparison, we again calculated the optimal
rectangular pulse to switch the FitzHugh-Nagumomodel from
quiescence to repetitive firing and found that the best stimulus

had an amplitude of 0.11 and a duration of 21.102 resulting in
an L2-norm of 0.26. The results from the gradient algorithm
ranged from 0.0038 at the best and 0.0097 at its worst. Here
we can see a substantial improvement over standard rectan-
gular pulse stimulus.

Like our results in the Hodgkin-Huxley model, Fig. 9
shows the paths toward optimality resulting from different
initial randomly generated seeds. Although the different seeds
have a broad range of L2 norms and distances to the terminal
condition, almost all of them converge to one of the two
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Fig. 6 Gradient algorithm is robust to the initial stimulus. The stimulus
energy trajectories of 100 different seeds with different amplitudes are
shown
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Fig. 7 Only certain phase regions converged when transitioning from
quiescence to repetitive firing. The points that converged are marked in
black, while those that failed are marked in red. For a definition of the
phase, see Methods 2.4 and 2.5
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Fig. 8 Gradient algorithm finds multiple optimal solutions that induce a
transition from quiescence to repetitive firing. The initial condition (qui-
escent fixed point) and the terminal condition (ϕ=0) of the gradient
algorithm are the same for both trials. The only difference is the initial
randomly generated stimulus that is given to the gradient algorithm. The
top panel shows the two optimal stimuli (green and blue), while the
bottom panel shows the response from the x1 variable in the FitzHugh-
Nagumo model to the stimuli (matched green and blue). For a definition
of the phase, see Methods 2.4 and 2.5
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Fig. 9 Trajectories of stimulus energy through 200 iterations of gradient
algorithm show convergence to two waveforms. We ran 100 different
randomly generated seeds with different scaling factors. The green and
blue colors match the respective green and blue waveforms seen in Fig. 8
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clusters. We found that of the solutions that converged, 78 %
of the randomly generated seeds converged to the larger L2-
norm solution and 22 % converged to the smaller L2-norm
solution. We note in Fig. 9 that there are some points that drop
L2-norm very sharply with successive iterations, almost as if
attracted to the lower local optimum, but then bounce back up,
settling into the upper local optimum. This phenomenon is
due to the fact that a single iteration may cause the L2-norm to
drop by a lot, but it may increase the error in the terminal
conditions. In the next iteration, the gradient algorithm cor-
rects the error in the terminal condition, leading to the bounce
back in the L2-norm value.

3.3 The FitzHugh-Nagumo model: repetitive firing
to quiescence

Figure 10 shows the L2-norms of 10 runs each of the 68
computational studies from each of the points along the repet-
itive firing limit cycle to the quiescent point. In all cases the
stimulus duration was set at 8 ms. From the figure, we can see

that there is again an optimal window where ϕ is between 0.4
and 0.6 at which to begin transitioning from the repetitive
firing limit cycle to the quiescent fixed point. This corre-
sponds to the location closest to the quiescent fixed point.
Around this window, the best L2-norm values sit around
0.012. In comparison, the most optimal constant stimulus
waveform has an L2-norm of 0.064, for a duration of
7.87 ms and an amplitude of 0.09 given at ϕ=0.72. It is
interesting to note that when using a constant stimulus wave-
form, the discrete stimulus fails to suppress repetitive firing
across a large range of phase angles. In contrast, the gradient
method enables discovery of novel waveforms that induce a
transition from a broad range of phases around the limit cycle
to the quiescent state.

We had discussed how multiplicity occurred in the earlier
example of stimuli that induce the FitzHugh-Nagumo neuron
to transition from the quiescent state to the repetitive firing
state, due to the cyclical nature of the system. Here, we can see
that evenwhen the stimulus duration is smaller than one cycle,
we can find multiplicity with the FitzHugh-Nagumo system.
We chose the example where ϕ=0.678. Figure 11 shows the
convergence of a set of randomly generated initial conditions
towards the two different stimuli. Figure 12 shows two stimuli
that start from the same point on the repetitive firing limit
cycle and end up at the quiescent point.

One interesting implication about this particular result is
that there is potential for applying the gradient algorithm to
phase shifting an oscillatory system. What we can see here in
Fig. 12 is that one of the solutions transitions almost immedi-
ately into the quiescent point, while the other makes a loop
around the limit cycle before entering into the quiescent point.
This is interesting because the normal period of one cycle is
12.84 ms. We captured an instance where the stimulus in 8 ms
has traveled around the entire limit cycle. We could theoreti-
cally set up the gradient algorithm to travel from one point on
the limit cycle to a different point of the limit cycle, requiring

0.01

0.1

1

10

0 0.5 1

S
tim

ul
us

 E
ne

rg
y

Phase (φ)

-1

-0.5

0

0.5

1

0 4 8

-u

Time (ms)

-1

-0.5

0

0.5

1

0 4 8

-u

Time (ms)

-1

-0.5

0

0.5

1

0 4 8

-u

Time (ms)

-1

-0.5

0

0.5

1

0 4 8

-u

Time (ms)

a b

c d

B

A

a c

d

b

Fig. 10 Gradient algorithm reveals multiplicity in transitioning from
repetitive firing to quiescence across different phases. The top panel
shows the stimulus energy of the different optimized stimuli (8 ms
duration) that induce transitions from different phases of repetitive firing
to the quiescent fixed point. Specific examples of different solutions are
shown in the bottom pane, labeled a through d. Note that b and c are
solutions with the same starting phases. For a definition of the phase, see
Methods 2.4 and 2.6
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that induce a transition from repetitive firing to quiescence. The trajecto-
ries of stimulus energy through 100 iterations of gradient algorithm are
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0.678). For a definition of the phase, see Methods 2.4 and 2.6
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this phase shift to take place within a fraction of the period of
the limit cycle. In this way, the gradient algorithm can be used
to find optimal phase shifting stimuli (Dean et al. 2009; Forger
and Paydarfar 2004; Serkh and Forger 2014).

4 Discussion

Optimal control theory is rooted in calculus of variations,
developed by Bernoulli, de l’Hôpital, and Euler (Gelfand
and Fomin 2000). However, the real-world applications of
calculus of variations did not start until more recently in the
1950s. Because problems in optimal control generally are
nonlinear, they do not have simple solutions that can be
analytically determined. Thus, a range of numerical methods
were developed. These numerical methods fall into roughly
one of two broad categories: indirect methods and direct
methods (Betts 1998; Rao 2010).

Indirect methods use Pontryagin’s maximum principle to
determine a set of first-order conditions that define the optimal
solution. This set of first-order conditions combines the orig-
inal state variables with an extra set of adjoint variables, one
for each of the original states, that measures the influence of
the state variables to each other. A boundary value problem
(BVP) solver like the shooting method or Newton–Raphson
method is then used to solve numerically this new system of
equations. The advantage of the indirect method is that once a
solution is found from the BVP solvers, it is easily verified
against the first-order conditions captured by calculus of
variations.

One of the disadvantages of the indirect method is that the
region of convergence around the variables may be smaller
with the addition of the adjoint variables. Thus, there is a
higher chance of starting a BVP solver at a state that ultimately
diverges from the optimal solution. With most numerical
algorithms, a good initial guess can avoid starting at locations
that diverge from the optimal solution. However, one usually
requires some background information or understanding of
the equations to be able to provide a good initial seed from
which most BVP solvers will work. If a bad seed is chosen,
the BVP solver will diverge away from the solution. With the
adjoint variables, developing the initial seed becomes even
more difficult as they do not have any physical interpretation
by which to understand how they relate to the other variables,
and thus it is difficult to even develop an initial estimate for
these variables by which to seed the algorithm. To this point,
most researchers have attempted to simplify the Hodgkin-
Huxleymodel in order to circumvent these two disadvantages.
Researchers have used a phase reduction model of the neuron
(Danzl et al. 2010; Moehlis et al. 2006; Nabi and Moehlis
2012), parameterized the stimulus (Tahayori and Dokos
2012), or used simpler “integrate-and-fire” models (Jezernik
and Morari 2005; Offner 1946). To our knowledge only
Forger et al (2011) have applied the indirect method to solve
the original Hodgkin-Huxley model in its complete form.

The direct method, first proposed by Kelley (1962) and
further developed by Bryson and Ho (1975), does not create a
surrogate system of equations, but instead uses the original
system of equations to iteratively move towards a more opti-
mal solution. This method does not add any new parameters
and thus avoids the need to calculate another set of variables
and first-order derivatives. Furthermore, by not adding a new
set of parameters to the systems of equations, it allows for a
larger region of convergence from the initial estimate; indeed
we have shown that randomly generated stimulus waveforms
can be used to find optimal solutions for induction of an action
potential in the monostable Hodgkin-Huxley equations, as
well as induction or suppression of repetitive firing in the
bistable FitzHugh-Nagumo equations. We were able to show
with both models that the solutions converged even though
they started from very different seeds. Because of this, a priori

-1

-0.5

0

0.5

1

1.5

-15 -10 -5 0 5 10 15 20

-u

Time (ms)

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

-15 -10 -5 0 5 10 15 20

-x
1

Time (ms)

-0.5

0

0.5

1

1.5

-2 0 2

x2

x1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.5 1 1.5

x2

x1

Fig. 12 Gradient algorithm reveals different mechanisms of suppressing
repetitive firing. The top panel shows the stimuli, the middle panel the x1
response to the stimuli. The bottom panel shows the entire state space
response to both stimuli. As we can see, one stimulus (green) suppresses
the system quickly, while the other stimulus (blue dashed) causes the
system to run more quickly around the oscillatory state before entering
into the quiescent state. The black line in the figure is marked to show the
first course of the system without any stimulation. This marks the limit
cycle of the repetitive firing state. For a definition of the phase, see
Methods 2.4 and 2.6

J Comput Neurosci



knowledge is not needed to find locally optimal solu-
tions. In order to explore the solution space further and
find a global optimal solution, we have developed this
algorithm to include a stochastically seeding component.
By running the algorithms with different randomly gen-
erated seeds, the algorithm allows for more of the
solution space to be explored, thus allowing one to have
greater confidence that the best solution found is indeed
the global optimal.

One of the advantages of using this gradient algorithm is its
ability to find optimal solutions even when terminal condi-
tions are not defined for all of the state variables. As we noted
in finding the optimal stimulus necessary to trigger a single
action potential, the gradient algorithm did not require us to
have the terminal condition defined for all four state variables.
We were able to construct the algorithm such that it found the
optimal stimulus necessary to achieve a membrane voltage
above the threshold for an action potential. Considering that
our specific goal was to find the optimal stimulus necessary to
elicit an action potential, this allowed us to find the optimal
without adding any extra restrictions on the terminal condi-
tions. By adding more terminal conditions than we need, we
are actually restricting our search for a global optimum and
including certain assumptions into the algorithm that may lead
to sub-optimal solutions.

Our computational study using the gradient algorithm has
shown the importance of precisely defining the optimality
problem, lest we actually find an optimal solution to a differ-
ent problem. In our study, we wanted a globally optimal
solution, and so we left the terminal condition to only include
the voltage threshold. In the study of Forger et al (2011),
specific states were obtained using a priori knowledge of
squid axons that were related to different biological mecha-
nisms leading to action potentials. By applying this knowl-
edge, they were able to find two unique optimal solutions
specific to the two unique mechanisms. Although we imposed
no restrictions on the physiological mechanism for eliciting
action potentials in this study, we did find that constraints on
the timing of a spike resulted in qualitatively different optimal
waveforms (Fig. 5).

While the gradient algorithm has been advantageous for
our applications, it has also shown some of its limitations.
Because we were using a first-order system, there were termi-
nal conditions to which the algorithm was unable to converge,
due to the highly nonlinear sensitivity of the system to the
stimulus in certain regions. We have found that in these
situations, the first-order gradient will overshoot the optimal
solution and cause the algorithm to iterate through a worse
solution. From here, the algorithm re-iterates to improve the
solution again towards the optimal, but repeatedly fails near
the terminal condition by overshooting again. We note that
this pattern occurs most often in rapidly changing regions in
our systems (e.g. near the peak of the action potential). In

areas that are less sensitive to changes in the stimulus, the
gradient algorithm performs very well.

It is possible to use the second-order gradient in the algo-
rithm as well in order to prevent overshooting. However, the
second-order gradient algorithm is much more sensitive to the
initial estimate, and thus has a difficult time even beginning to
iterate towards an optimal solution (Bryson and Ho 1975) as
the region of convergence is much smaller. One alternative
proposal is to combine both the first-order and the second-
order gradient algorithms in order to maximize the first-or-
der’s ability to converge quickly at the beginning, with the
second-order’s ability to converge more accurately at the end
(Golfetto et al. 2012).

We have shown how stochastically seeded gradient algo-
rithm can be applied to finding energetically optimal stimuli
for transitioning various biological systems from one state to
another, whether it is from a quiescent state to a single action
potential, a quiescent state to repetitive firing, or from repet-
itive firing back to quiescence. In this study, we have show-
cased this algorithm and its use in gaining insight into the
Hodgkin-Huxley system and the FitzHugh-Nagumo system
when evaluating optimization based on L2-norm. Future work
may focus on applying the same techniques to neurons that
exhibit a much wider repertoire of behaviors (Barnett et al.
2013; Butera et al. 1999; Izhikevich 2000, 2007; Rinzel and
Ermentrout 1998), which have been classified extensively
using bifurcation theory. These techniques can also be applied
to more complicated models like those that describe the im-
pact of deep brain stimulation to treat Parkinsonian tremors
(Chen et al. 2011; Feng et al. 2007; Hauptmann et al. 2005;
Howalski et al. 2007; Rubin and Terman 2004; Schiff 2010)
and epileptic seizures (Durand and Warman 1994; Iasemidis
2003; Lian et al. 2003; Sunderam et al. 2010; Tass 2003).

Furthermore, while applying this algorithm to finding op-
timal external electrical stimulation, we postulate that the
stochastically seeded gradient algorithm can also aid in
gaining insight into what design principles may be in play in
endogenous neuronal stimulation. There has been a wealth of
research recently focusing on understanding fundamental de-
sign principles that govern neuronal excitation, for instance in
elucidating how sensory percepts are encoded (Koelling and
Nykamp 2012; Machens et al. 2005; Watson et al. 1983), as
well as to populations of neurons within functioning networks
to better understand how information is transmitted from
neuron to neuron (Alle et al. 2009; Attwell and Laughlin
2001; Sengupta et al. 2010; Torrealdea et al. 2006). If one
hypothesized that metabolic energy, or ATP consumption, was
what the endogenous stimulation optimized, one could con-
struct an equation relating the number of ATPs consumed to
the generation of the action potential itself, incorporate that
into the optimization metric in the algorithm, and then deter-
mine a theoretical result that could be verified or refuted
through experimental techniques.
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