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Abstract

Quantifying the complexity of physiologic time series
has been of considerable interest. Several entropy-
based measures have been proposed, although there is
no straightforward correspondence between entropy and
complexity. These traditional algorithms may generate
misleading results because an increase in system entropy
is not always associated with an increase in its complexity,
and because the algorithms are based on single time scales.

Recently, we introduced a new method, multiscale
entropy (MSE) analysis, to calculate entropy over a
wide range of scales. In this study, we sought to
determine whether loss of complexity due to aging could
be distinguished from that due to major cardiac pathology.
We analyzed RR time series from young subjects (n=26),
elderly subjects (n=46) and subjects with congestive heart
failure (n=43).

The mean MSE measures of each of the three groups
revealed characteristic curves, suggesting that they capture
fundamental changes in the heart rate dynamics due to
age and disease. We used Fisher’s linear discriminant
to evaluate the use of MSE features for classification. In
discriminant tests on the training data, we found that MSE
features could separate elderly, young and heart failure
subjects with 92% accuracy and that older healthy subjects
(mean age=65.9) could be separated from subjects with
heart failure (mean age=55.5) with 94% accuracy. Also,
we discriminated data from heart failure subjects and
elderly healthy subjects with a positive predictivity of 76%
and a specificity of 83% using only the MSE features.
Larger databases will be needed to confirm if automatic
classification results can match separation results.

We conclude that MSE features capture differences
in complexity due to aging and heart failure. These
differences have implications for modeling neuroautonomic
perturbations in health and disease.

1. Introduction

Heart rate variability is the output of multiple physiologic
control mechanisms that operate over a wide range of time
scales. As a result, cardiac interbeat interval (RR) time
series under healthy conditions have a complex temporal
structure with multiscale correlations [1, 2]. Our working
hypothesis is that aging and disease result in a loss of
complexity. The RR time series from elderly subjects
and those with heart disease should represent the output
of simpler dynamical systems, and therefore, will be
anticipated to have less complex temporal structures than
those of young healthy subjects.

Classical entropy and physiologic complexity concepts
do not have a straightforward correspondence [3, 4].
Entropy is related to the degree of ”randomness” of a
time series and it is maximum for completely uncorrelated
random signals. Complexity is related to the underlying
structure of a time series and its information content. An
increase of the entropy assigned to a time series usually, but
not always, corresponds to an increase of underlying system
complexity.

Entropy-based algorithms [5, 6] for measuring the
complexity of physiologic time series have been widely
used. They have proved to be useful in discriminating
between healthy and disease states [7, 8], although some
results may generate misleading conclusions. For example,
the entropy that these algorithms assign to time series
derived from the ventricular response in atrial fibrillation
(AF) is higher than that assigned to sinus rhythm time series
derived from healthy subjects. However, healthy systems
generate much more complex outputs than diseased ones.
Traditional algorithms are single-scale based and, therefore,
fail to account for the multiple time scales inherent in
physiologic systems. We have developed a novel method
[9] to calculate multiscale entropy (MSE) from complex
signals.

In 1991, Zhang [10, 11] proposed a new complexity
measure that applies to physical systems. His measure,



defined as a weighted sum of scale-dependent entropies,
has the advantage of yielding higher values for correlated
noises than for uncorrelated ones. However, since it is
based on Shannon’s definition of entropy, it requires a large
number of almost noise-free data points [12]. Therefore,
the possibility of applying Zhang’s measure to real world
time series is very limited. In contrast, our method is based
on the Approximate Entropy (ApEn) family of parameters,
which have been widely applied to physiologic and medical
time series analysis [5].

In previous work [9], the MSE method has been applied
to heart rate time series from healthy subjects and subjects
with AF and congestive heart failure (CHF). The resulting
MSE curves for these groups have shown distinct patterns.
This led us to question whether MSE could be used in an
automatic algorithm to classify individual RR time series
according to pathology. In previous work, we found that
AF was easily distinguished. In this new work we address
the greater challenge of distinguishing the effects of aging
and CHF. We applied the MSE method to an expanded
dataset of elderly and young healthy subjects and subjects
with CHF. MSE profile curves were created for each subject
(n=115). These profile curves were then used as features in
Fisher’s linear discriminant and classified into three groups.
Following the initial separation results, the “leave one out
and test” method was used to simulate how the classifier
would respond to non-training set data [13].

2. Multiscale entropy (MSE) method

The MSE method is described in [9]. Given a time
series,
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coarse-grained time series by averaging a successively
increasing number of data points in non-overlapping
windows. Each element of the coarse-gained time series,�������� , is calculated accordingly to the equation:

����������������
� � 


"! � �# � �$��% �
��
&�

(1)

where � represents the scale factor and �('*)+'-,.��/ . For
scale 1, the coarse-grained time series is simply the original
time series.

Next, we calculated Sample entropy (SampEn) [6], a
refinement of the original ApEn statistics [5], for each
coarse-grained time series plotted as a function of the of
scale factor � .

3. Data

We applied the MSE method to the cardiac interbeat
(RR) intervals time series derived from 24 hour ECG Holter
recordings from healthy subjects and subjects with CHF.

All data analyzed here are available at http://physionet.org
[14] and have been described in ref. [15].

The data for the normal control group were obtained from
24 hour Holter monitor recordings of 72 healthy subjects,
35 men and 37 women, aged 0�1 � 243 � 25�76 years (mean

3
SD,

range
698�:<;�=

years). ECG data were sampled at 128 Hz.
The data for the CHF group were obtained from 24 hour
Holter recordings of 43 subjects (28 men and 15 women)
aged 090 � 0 3 �9� � 1 years (mean

3
SD, range

6>6�:?;@=
years). All

datasets were filtered to exclude artifacts, missed detections
and isolated ectopic beats. Furthermore NN intervals less
than

6A� 8>B
and greater than

85�769B
were excluded if the interval

value differed by more than
6�8DC

from the mean of the forty
surrounding interval values.

4. MSE analysis

We note that, for scale one, which is the only scale
considered by traditional single-scale based methods, the
entropy assigned to the time series of healthy young
subjects and CHF subjects are not distinguishable, and
time series of elderly healthy subjects are assigned the
lowest entropy values. However, for all scales but the
first one, healthy young subjects are assigned the highest
entropy values, which shows that healthy dynamics are the
most complex, contradicting the results obtained using the
traditional SampEn or ApEn algorithms. The difference
between SampEn values for healthy elderly and CHF
subjects corresponding to scale 6 is statistically significant
( ' 85� 8 0 ). However, for larger time scales, the SampEn
values for these two groups considerable overlap. This
indicates that MSE features other than absolute values of
entropy may be necessary to discriminate between these
groups.

The difference between the patterns of the MSE curves
for healthy young, healthy elderly and CHF groups on small
time scales may be due to the fact that the respiratory
modulation of heart rate (respiratory sinus arrhythmia,
RSA) is stronger in healthy subjects than in both elderly
and CHF subjects. The RSA corresponds to a frequency
peak centered close to 0.2 Hz over the RR interval power
spectrum. Since entropy is a measure of regularity
(orderliness), a higher amplitude of RSA is likely to result
in a lower value of the entropy of the RR time series. The
coarse-graining procedure filters out RSA oscillations from
the RR time series, such that, for time scales larger than
the average respiratory cycle length, the power spectrum of
coarse-grained time series presents a ���9E decay over the
entire frequency domain. Therefore, coarse-grained time
series from healthy young subjects are likely more irregular
(and are assigned higher entropy values) than the original
time series.

For CHF patients, the entropy of coarse-grained time
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Figure 1. MSE analysis of interbeat interval time
series derived from healthy young subjects, healthy elderly
subjects and subjects with congestive heart failure (CHF).
Symbols represent mean values for each class. The
maximum standard error (SE) values are 0.059 for young,
0.043 for elderly, and 0.057 for CHF classes, respectively.

series decreases down to time scale 3 and then progressively
increases. This result suggests that for CHF patients the
control mechanisms regulating heart rate on relatively short
time scales are the most affected.

5. Fisher discriminant analysis

We then used a Fisher’s linear discriminant to determine
if MSE profile curves could automatically classify
individual subjects into the young healthy, elderly healthy
and CHF groups. The Fisher discriminant is a technique
used to reduce a high dimensional feature set,

�
, to a lower

dimensional feature set � , such that the classes can be more
easily separated in the lower dimensional space. The Fisher
discriminant seeks to find the projection matrix w such that
when the original features are projected onto the new space
according to

� ��� � � � (2)

the means of the projected classes are maximally separated
and the scatter within each class is minimized. This matrix
w is the linear function for which the criterion function:
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is maximized. In this equation,
��


and
��

represent the
between class scatter and within class scatter, respectively.
This expression is well known in mathematical physics as
the generalized Rayleigh quotient. This equation can be
most intuitively understood in the two class case where is
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Figure 2. Projection of MSE features of the cardiac
interbeat time series derived from healthy young subjects,
healthy elderly and congestive heart failure (CHF) subjects.
The forty dimensional feature vectors comprising the forty
MSE values are projected down to two dimensions. A
linear classifier was then used in this space to discriminate
between the classes.

Linear Classifier Results
Labeled As

Recognized as: Young Elderly CHF
Young 24 1 0
Elderly 2 42 3

CHF 0 3 40

Table 1. The application of the linear classifier in
two dimensional space shows that young healthy subjects
are entirely separated from CHF patients. There were
three misclassifications between elderly and young and six
misclassifications between elderly and CHF patients.

reduces to: ��� ���4������ � : ���� ��B
� ��� �B

� � (4)

where �� � and ���� are the projected means of the two classes
and �B � and �B � are the projected scatter of the two classes.
This function is maximized when the distance between the
means of the classes is maximized in the projected space
and the scatter within each class is minimized. A full
derivation of the solution of this problem can be found in
the ref. [13].

In Figure 2 we present the results of the MSE method
for the training set. For this analysis we generated MSE
curves for two different values of the SampEn parameter
r (r=0.10, r=0.15) [5] such that each dataset generated
forty features (corresponding to time scales 1-20). These
features were projected down to a two dimensional space
as shown in Figure 2. From this figure it can be seen
that the data separate into well-defined clusters. Using a



linear classifier in the two dimensional space we are able
to correctly classify 106 out of 115 subjects, as illustrated
in Table 1, giving approximately 92% separability in the
training set.

To simulate how the classifier would respond to data
outside the training set, we used the “leave one out and
test” method where a classifier is trained on all except
one subject, then the remaining “test” subject is classified.
Using this method, we were able to discriminate data from
the heart failure subjects from the older healthy subjects
with a positive predictivity of 76% and a specificity of
83% using only the MSE features. Larger databases will
be needed to confirm if automatic classification results can
provide comparable results.

6. Discussion and conclusions

Previous findings using MSE show that complexity
degrades with disease and aging [9]. However, using
traditional single scale entropy-based measures, time series
derived from healthy subjects and subjects with CHF may
not be distinguishable. Furthermore, the poorest separation
between young and elderly healthy subjects occurs for scale
one. In contrast, the MSE method reveals that for larger
time scales the highest entropy values are assigned to young
healthy subjects. Therefore, MSE results are compatible
with the concept that young healthy systems are the most
complex and adaptive ones.

We have also shown that the characteristic MSE profile
curves can be used in an automatic classification algorithm
to separate young healthy, elderly healthy and CHF
subjects. The accuracy of the results declined when the
leave one out and test method was applied, suggesting that
the classifier is overtrained to the test data. Nevertheless,
high accuracies were still achieved in the two class case,
supporting testing on expanded data sets to further assess
clinical applicability.

The MSE method seems to have the capacity to
distinguish between time series generated by different
mechanisms. Furthermore, it may be applied to a wide
variety of other physiologic and physical time series.
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