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Ventricular Fibrillation and Tachycardia
Classification Using a Machine Learning Approach

Qiao Li, Cadathur Rajagopalan, Senior Member, IEEE, and Gari D. Clifford*, Senior Member, IEEE

Abstract—Correct detection and classification of ventricular fib-
rillation (VF) and rapid ventricular tachycardia (VT) is of piv-
otal importance for an automatic external defibrillator and patient
monitoring. In this paper, a VF/VT classification algorithm using a
machine learning method, a support vector machine, is proposed.
A total of 14 metrics were extracted from a specific window length
of the electrocardiogram (ECG). A genetic algorithm was then
used to select the optimal variable combinations. Three annotated
public domain ECG databases (the American Heart Association
Database, the Creighton University Ventricular Tachyarrhythmia
Database, and the MIT-BIH Malignant Ventricular Arrhythmia
Database) were used as training, test, and validation datasets. Dif-
ferent window sizes, varying from 1 to 10 s were tested. An ac-
curacy (Ac) of 98.1%, sensitivity (Se) of 98.4%, and specificity
(Sp) of 98.0% were obtained on the in-sample training data with
5 s-window size and two selected metrics. On the out-of-sample
validation data, an Ac of 96.3% + 3.4%, Se of 96.2% = 2.7 %, and
Sp of 96.2% =+ 4.6% were obtained by fivefold cross validation.
The results surpass those of current reported methods.

Index Terms—Machine learning, public domain electrocardio-
gram (ECG) database, support vector machine (SVM), ventricular
fibrillation (VF) detection.

1. INTRODUCTION

ENTRICULAR fibrillation (VF) and rapid ventricular
V tachycardia (VT) are dangerous arrhythmic events lead-
ing to inevitable death if no defibrillation shock is applied to the
subject within a few minutes [1].

In the last decades, a number of algorithms for VF and VT de-
tection [1]-[10] have been proposed. Methods based on process-
ing of the electrocardiogram (ECG) signal in the time domain
have included the use of threshold crossing criteria [2], autocor-
relation function [3], and conversion of the ECG signal into a
binary signal and assessing its complexity [5]. In the frequency
domain, studies have proposed the use of bandstop filtering of
the signal and estimation of the leakage [6], and spectrum analy-
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sis methods [7]. Some novel methods to detect VF include using
wavelet transform [8], neural networks [9], and support vector
machines (SVMs) [10]. A combination of parameters, which re-
flect the frequency and morphological ECG characteristics, was
found to be an efficient approach for VF detection [11], [12].

Some of the algorithms have been evaluated in [13] and [14].
Amann et al. [15] reviewed ten VF detection algorithms and
compared their performances under equal conditions using
open, published annotated databases. Among the ten algorithms,
the signal comparison algorithm (SCA) achieved the best per-
formance with an accuracy (Ac) of 96.2%, a sensitivity (Se) of
71.2%, and specificity (Sp) of 98.5%. Amann’s results showed
that no algorithm achieved its values for Se or Sp claimed in the
original papers because the original researchers made a prese-
lection of the signals by hand. Therefore, using public domain
databases is essential to evaluate true algorithm performance.

Some studies have shown that the combination of ECG fea-
tures extracted from different algorithms may enhance the per-
formance of VF detection [1], [9], [16], [17]. Jekova extracted
a set of ten parameters of the ECG signals and employed dis-
criminant analysis to select variables [1]. Four parameters were
selected by this approach and the best performance achieved
had a Se of 94.1% and a Sp of 93.8%. However, almost all
the reported studies used the entire dataset for the development
and performance reporting of their algorithms without splitting
the dataset into a training and test dataset for use during the
development and validation of the algorithms.

In this paper, a VF classification algorithm using a machine
learning method is proposed. The algorithm design included a
development phase and a validation phase. Three annotated pub-
lic domain ECG databases were used; the Creighton University
Ventricular Tachyarrhythmia Database (CUDB), the MIT-BIH
Malignant Ventricular Arrhythmia Database (VFDB), and the
American Heart Association Database (AHADB).

In the development phase, 14 VF metrics were extracted from
a specific window length (5 s) of ECG. We then used a feature
selection technique, a genetic algorithm (GA), to select the op-
timal combination of variables. The GA mimics the principles
of natural selection to “breed” possible successful combinations
of parameters, and “kills off”” poorly performing combinations
of parameters. Every possible combination of selected features
was trained and tested using an SVM classifier on the study
dataset, which was split further into training and test set. The
combinations of different number of features which result in the
best performance were selected.

In the validation phase, fivefold cross validation was per-
formed on the study dataset with different window lengths (from
1 to 10 s) to evaluate the algorithm.

0018-9294 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE I
DETAILS OF TRAINING AND TEST SET
Training Test Total
DB | lud Nb Nb includ Nb Nb Nb Nb
10CUAe] Lecords | channels | ™| records | channels | records | channels
cups | %44 1 g 18 | &y 17 35 35
order order
vepg | 44 |y 2 | ¥ n 22 22 44
order order
anapg| °44 |5 10 | e | s 10 10 | 20
order order
Total 34 50 33 49 67 99
Nb = Number.
TABLE 11

NUMBER OF SEGMENTS OF VF AND NON-VF WITH DIFFERENT
WINDOW LENGTHS

Window Training Test Total

length (s) VF Non-VF VF Non-VF VF Non-VF
1 17376 | 50158 13869 | 53707 | 31245 | 103865
2 8610 24993 6855 26739 15465 51732
3 5694 16596 4530 17769 10224 | 34365
4 4232 12415 3352 13287 7584 25702
5 3362 9893 2656 10585 6018 20478
8 2114 6134 1656 6568 3770 12702
10 1689 4876 1328 5221 3017 10097

II. METHODS
A. Database

All the records including VF and VT signals from CUDB,
VFDB, and AHADB were used in this study. The CUDB
includes 35 records of 8 min single-channel ECG data. The
VFDB includes 22 records of 35 min two-channel ECG data.
The AHADB VT and VF records (No. 8201-8210) include ten
records of 30 min two-channel ECG data. There are a total of
67 records and 99 channels of full length annotated ECG in the
entire dataset (which is called the study dataset in the rest of the
paper).

VF rhythms include ventricular flutter, VF, and VT. As there
is no VT annotation in CUDB, the VT segments in CUDB were
reannotated by an experienced cardiologist. Non-VF rhythms
include normal sinus rhythm, atrial fibrillation, ventricular
bigeminy, first degree heart block, high-grade ventricular ec-
topic activity, nodal rhythm, paced rhythm, sinus bradycar-
dia, supraventricular tachyarrhythmia, and ventricular escape
rhythm. Note that segments labeled as asystole in which signals
did not exceed 150 1V peak-to-peak and segments labeled as
noise were excluded from the study dataset.

VF and Non-VF rhythms were marked segment-by-segment
according to the length of an analysis window ranging from 1 to
10 s. The window segments are not overlapping. The 67 records
used in the study dataset were split into training and test set
using the odd and even record order in the database, e.g., the
first record was put into the training set, while the second one
went into the test set. Table I shows the details of the training and
test set. The total segments of VF and Non-VF with different
window length are shown in Table II.

B. ECG Signal Preprocessing Filtration

The sampling frequency of the ECG data was 250 Hz. The
applied signal preprocessing included: 1) a high-pass filter with
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1-Hz cutoff frequency to suppress residual baseline wander; 2) a
second-order 30 Hz Butterworth low-pass filter to reduce high-
frequency noise; and 3) a notch filter to eliminate power line
interference.

C. VF Metrics

14 VF metrics were extracted based on a review of recent
published documents as follows:

1) Complexity Measure (Complexity) [5]: A binary signal
calculation is applied to a specific window of the ECG data
(e.g., 5 s). A 0/1 binary string is generated by comparing the
ECG data to a suitably selected threshold. The mean value z,,
of the data points in the selected window is calculated and
subtracted from each signal sample. The positive peak value
V), and the negative peak value V), of the x; data thus obtained
are taken. The number of x; in the interval [0 < z; < 0.1V},] is
denoted P, and the x; in the interval [0.1V,, < z; < 0] by N,.
If (P. + N.) < 0.4n, where n is the number of samples in the
selected window, the threshold is selected to be T,; = 0; else if
P. < N, then T; = 0.2V},, otherwise T; = 0.2V,,. The ECG
data are converted into a string (Binary_s): if x; <1y, s; =0,
orelse s; = 1.

A complexity measure c¢(n) is then computed using the fol-
lowing procedure: If S and ) represent two strings and SQ is
their concatenation. SQp is the string SQ without its last ele-
ment. At the beginning, c¢(n) =1, .5 = s1,Q = s2, SOp = s1.
After a number of operations, S = sy, So,...,5, and QQ = s, ;1.
If @ is a substring of SQp, S does not change and () be-
comes () = S;41,Sr42,..., etc. until obtaining (), which is
not a substring of SOp. S is renewed to be S combined with
(S =81,89, .y SrySri1ye ey Srii)s @ = Sryit1, and ¢(n) =
c(n) + 1. The aforementioned procedures are repeated until @)
is the last character. The normalized C(n) is computed as

C(n) = ¢(n)/b(n) (D

where b(n) gives the asymptotic behavior of ¢(n) for a random
string, such that

b(n) = n/In(n). )

2) VF-Filter Leakage Measure (Leakage) [6]: The VF-filter
technique corresponds to a narrow bandstop filter applied to
the signal with central frequency equivalent to the mean signal
frequency. Its output is the VF-filter leakage. The VF signal
is considered to be of quasi-sinusoidal waveform. The mean
period of a fixed length of data is obtained as

m m -1
T:%ZIW|< M—m) 3)
i=1 i=1

where V; are the signal samples and m is the number of data
points.

The narrow bandstop filter is simulated by combining the
ECG data with a copy of the data shifted by half a period. The
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VE-filter leakage is computed as

m

m -1
Leakage = » Vi + Vi(r/o)| [ >_(IVil + |V;(T/2)|)] :
i=1 i=1
“)
3) Spectral Analysis [7]: Each data segment is multiplied by
a Hamming window and transformed in the frequency domain
by fast Fourier transform (FFT). Four spectrum parameters, the
first spectral moment normalized (FSMN) and A1, A2, A3, are

obtained from

FSMN — L2 A

F Y A
where F' is the frequency of the component with the greatest
amplitude (called the peak frequency) in the range 0.5-9 Hz;
fi is the ith frequency in the FFT between O and 100 Hz; A;
is the corresponding amplitude; Al is the sum of amplitudes
between 0.5 Hz and F/2, divided by the sum of amplitudes
between 0.5 Hz and 20 F; A2 is the sum of amplitudes between
0.7 and 1.4 F divided by the sum of amplitudes between 0.5 Hz
and 20 F; A3 is the sum of amplitudes in 0.6 Hz bands around
the second to eighth harmonics (2-8 F), divided by the sum of
amplitudes in the span of 0.5 Hz to 20 F.

4) Time Delay Algorithm (Timedelay) [18]: Based on phase
space reconstruction, the signal s(#) is plotted in a diagram in
the following way: x(¢) is plotted on the x-axis, and x(¢ + 7)
on the y-axis, 7 being a proper time constant (7 = 0.5 s for VF
detection).

ECG data are down-sampled to a frequency of 50 Hz. Phase
space plots [z(t), (¢ + 7)] are plotted on a 40 x 40 grid, where
the 40 x 40 grid stretches from the minimum to the maximum
of the investigated ECG signal. The area of the plot filled by the
curve is counted and the time delay is defined by

®)

number of visited boxes

Time delay = (6)

5) Bandpass Filter and Auxiliary Counts [11]: An inte-
ger coefficient recursive digital filter with central frequency at
14.6 Hz and bandwidth from 13 to 16.5 Hz (-3dB) is applied on
the ECG data. With a sampling frequency of 250 Hz, the filter
is designed by

14FS;_; — TFS;_o + (S; — Si—2)/2
= 3 (N
where S; is a signal sample with index ¢ and FS; is the filtered
signal sample with index i.

Three auxiliary parameters are calculated from the absolute
values of the digital integer-coefficient filter output (FS), named
Countl, Count2, and Count3. Each parameter represents the
number of signal samples with amplitude values within a certain
amplitude range, calculated for a specific window.

1) Countl—Range: 0.5"max(|FS|) to max(|FS|);

2) Count2—Range: mean(|FS|) to max(|FS|);

3) Count3—Range: mean(|FS|) — MD to mean(|FS|) + MD,
where max (|FS|), mean (|FS|), and mean deviation (MD) are
computed for every 1 s time interval.

6) Covariance Calculation (CovarBin) [I]: Measures the
variance of the corresponding binary signal (Binary_s) of ECG.

number of all boxes

FS;
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TABLE III
CLASSIFICATION PERFORMANCE OF EACH INDIVIDUAL METRIC
(WINDOW SIZE = 5 S)
. Training set (%) Test set (%)
Metrics
Ac | Se | Sp |AUC| Acg | Ac | Se | Sp |AUC| Acg

Complexity |51.08|84.18|39.83|67.62(62.00|54.27|92.13|44.77(74.70|68.45
Leakage [93.38|94.41]93.04|98.16(93.72(95.35|86.03|97.69(98.47|91.86
FSMN {60.10]|76.06(54.68|68.19(61.08|61.90(77.33|58.03(72.79|67.89
Al 47.17|71.98|38.73(58.29|55.36|45.32|55.38|42.80|43.68|49.09

A2 87.56|85.75(88.17|93.65(87.43|89.76(74.13|93.68(91.49|82.35

A3 71.73|65.08|73.99|74.66|69.54(73.92|70.29|74.83|80.03|72.56
90.31(98.69(87.46(97.81|93.07(93.93|93.52|94.03|97.56|93.78
94.28(95.48|93.87(98.49|94.68|94.25|84.30|96.74|95.09|90.52
96.33|97.77(95.85(99.57|96.81|97.05(91.42|98.47|99.21|94.94
96.27(97.53(95.84|99.55196.68|97.01{89.04(99.01|99.20|94.03
79.28(98.66|72.70|93.01|85.68(83.25(94.80|80.35|94.25|87.58
49.84(90.90|35.88(67.67|63.39|54.06|93.22|44.23|76.70|68.73
82.14|85.87(80.87|93.02(83.37|89.91(93.45|89.02(94.26|91.24
88.54(98.72|85.08|96.98|91.90(92.61(92.17|92.72|96.80(92.44

Timedelay
Countl
Count2
Count3

CovarBin

FreqBin

AreaBin

Kurtosis

7) Frequency Calculation (FregBin) [1]: Calculated by
counting the number of binary signal (Binary_s) transitions be-
tween “0”and “1” and dividing it to the window length (e.g.,
5 s), thus, obtaining the transitions for 1 s.

8) Area Calculation (AreaBin) [1]: Realized by summing
the values of the binary signal (Binary_s) samples. AreaBin is
equal to the maximum between the sum of the binary signal
sample values and the sum of the inverted binary signal sample
values.

9) Kurtosis (Kurtosis) [19]: Calculated as the fourth stan-
dardized moment of the ECG

Kurtosis = E{(z — p1,)*}/o" — 3 8)

where F{} is the mathematical expectation operator, ;1 and o
are, respectively, the mean and standard deviation of the ECG
segment x.

D. Feature Selection

The SVM classification performance of each individual met-
ric is shown in Table III for both training and test sets for a
5 s window length. Se measures the proportion of VF segments
that have been correctly identified as VF. Sp measures the pro-
portion of non-VF segments that have been correctly identified
as non-VFE. Ac corresponds to the proportion of segments that
have been correctly classified. Note that AUC is the area under
receiver operating characteristic (ROC) curve, and Acp is the
balanced Ac (see Section II-F for detail).

Since it is unlikely that all 14 parameters are useful (and in
fact some may end up lowering the performance), a variable
selection technique is required. Moreover, with a limited num-
ber of patterns from which to learn, it is important to keep the
number of free parameters (a function of the number of features)
which we need to learn as low as possible. A GA was therefore
used to select the optimal subset of variables for VF classifica-
tion [20]. By defining a “chromosome” to be a 14 element binary
vector (each element representing one of the features with a “1”
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indicating a feature is selected), the GA efficiently explores the
space of variable combinations by “mutating” successful ran-
domly chosen chromosomes. A population of 50 chromosomes
was used with a 5% mutation rate, a 5% cloning rate, a 95%
cull rate for crossover, and a 50-generation limit; the search
space of possible variable combinations was rapidly explored.
The fitness function that was minimized was the root mean
squared error (rMSE) of a multivariate logistic regression. A
bootstrapping procedure was performed by running the logistic
regression and evaluating the rMSE on the training set with a
5 s window length. The GA selection was repeated 150 times
and the selected variables were sorted by the frequency of selec-
tion. Variables with higher rank (more frequently chosen) were
selected as the features to be used for classification.

E. Machine Learning Classification and Validation

During algorithm development, we used an SVM classifier
(LIBSVM library) [21], [22] with a Gaussian radial basis func-
tion kernel defined by K(x,,x,) = exp(—7 ||z, — zm ||2),
where «y controls the width of the Gaussian kernel and plays
a role in controlling the flexibility of the resulting classifier. x;,
and z,, are two vectors expressed in the initial feature space.
As the dataset is not balanced, a weight sector w is used on VF
class data when training, where

_ number of non-VF segments )
~  number of VF segments °

Every possible combination of selected features was fed into
the SVM model as input to train the model using the training set
with 5 s window length, beginning from the individual features,
then pairs, triplets, and so on. The models were then evaluated
on the test set. The feature combinations of each number of
features with best performance were selected.

In the algorithm validation phase, an SVM was used to eval-
uate the classification performance of the algorithm. Each se-
lected feature combination was validated using fivefold cross
validation on the study dataset. The fivefold cross validation
sorted the study dataset to fivefold by records rather than by the
ECG segments. Then, fourfold of records were used for training
and the last fold of the records was used for evaluation. This
process was repeated five times as one integral procedure. The
fivefold procedure was repeated randomly 50 times and the av-
erage of performance was used for evaluation. This approach
was repeated on different window length (from 1 to 10 s).

FE. Performance Measurements

We used the Se, Sp, Ac, and AUC to evaluate the performance
of the algorithm. Since the dataset is unbalanced, a weight w is
used to generate balanced result (Acp) when Ac is calculated
as follows:

- wTP + TN
" wTP + wFN + FP + TN’

Acg (10)
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TABLE IV
ORDERED RANKING OF SELECTED VARIABLES BY THE GA OVER 150 RUNS

Rank | Variable name | #Times selected
1 Leakage 150
2 Count2 150
3 CovarBin 150
4 FreqBin 150
5 AreaBin 150
6 Kurtosis 150
7 Complexity 147
8 A3 123
9 Countl 117
10 Al 62
11 FSMN 46
12 A2 4
13 Timedelay 0
14 Count3 0
" Leakage
A3
Timedealy
Count2
=" AreaBin
= Kurtosis
— Count2, Leakage
% a.l1 ofz ofs of4 ofs 06 of? o.ls ofs 1|
1-Specificity

Fig. 1. ROC curves of two selected feature combinations (Count2 and Leak-
age) and some individual features, window size = 5 s, on training set.

III. RESULTS
A. Feature Selection Result

Table IV shows the rank of variables sorted by the times of se-
lection through 150 repeats of GA. There are six variables which
were selected each of the runs and another three variables were
selected in more than 50% of the GA runs. We selected these
nine variables, including Leakage, Count2, CovarBin, FreqBin,
AreaBin, Kurtosis, Complexity, A3, and Countl.

B. Best Performances of Feature Combinations

Table V shows the best performances of feature combinations
and an SVM using the training and test dataset with 5 s window
length. Fig. 1 compares the ROC curve of two selected fea-
ture combinations (Count2 and Leakage) with some individual
features.

C. Validation Results

Using the feature combinations acquired from the last step,
fivefold cross validation was repeated randomly 50 times using
an SVM classifier on the study dataset with different window
lengths and the average performance is shown in Table VI.

The best VF classification Ac rate on the evaluation fold by
fivefold cross validation was 96.4% when two metrics, Count2
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TABLE V
BEST PERFORMANCES OF FEATURE COMBINATIONS (WINDOW SIZE = 5 S)

# of features Feature combinations Training (%) Test ()
Ac Se Sp | AUC | Acg Ac Se Sp | AUC | Acg
1 Count2 96.33[97.77 | 95.85[99.57 [ 96.81 [ 97.05 [ 91.42 [ 98.47 [ 99.21 | 94.94
2 Count2, Leakage 98.11 98.39|98.0199.79 | 98.20 | 97.52 [ 89.04 | 99.65 | 99.67 | 94.35
3 Count2, Leakage, A3 98.23 | 98.48 | 98.1599.79 | 98.32 | 97.55 [ 89.23 | 99.64 | 99.68 | 94.44
4 Count2, Leakage, A3, FreqBin 98.16 [ 98.48 | 98.05 [ 99.80 [ 98.27 [ 97.52 [ 89.16 | 99.61 | 99.70 | 94.38
5 Count2, Leakage, A3, FreqBin, Complexity 97.97|98.57|97.77199.80 | 98.17 | 97.54 | 89.38 | 99.58 | 99.71 | 94.48
6 Count2, Leakage, A3, FreqBin, Complexity, AreaBin 97.62198.5497.3199.78 197.93 | 97.67 [ 90.02 | 99.58 | 99.70 | 94.80
7 Count2, Leakage, A3, FreqBin, AreaBin, CovarBin, Kurtosis 97.38198.54[96.99 (99.77197.77 [ 97.70 | 90.17 | 99.59 | 99.69 | 94.88
8 Count2, Leakage, A3, FreqBin, Complexity, AreaBin, CovarBin, Kurtosis | 97.34 | 98.60 | 96.92 1 99.76 | 97.76 | 97.69 | 90.28 | 99.55| 99.69 | 94.92
9 All 9 features 97.38 | 98.66 | 96.95199.76 | 97.80 | 97.46 | 89.08 | 99.57 | 99.64 | 94.32
TABLE VI
FIVEFOLD VALIDATION RESULTS OF FEATURE COMBINATIONS (WINDOW SIZE = 5 S)
Training Evaluation
# of features

Ac (%) Se (%) Sp (%) AUC (%) | Acg (%) Ac (%) Se (%) Sp (%) AUC (%) | Acg (%)

1 96.1+£5.6 | 95.9+0.6 | 96.2+0.6 | 99.3+0.1 96.1£0.5 | 95.7£3.4 | 954433 | 95.7+4.5 | 99.2+0.7 | 95.5£2.6

2 96.9+0.5 | 96.6+0.6 | 97.0+£0.5 | 99.6+£0.1 | 96.8+0.5 | 96.3+3.4 | 96.2+2.7 | 96.2+4.6 | 99.6£0.4 | 96.2+2.3

3 96.9+£0.5 | 96.7+0.5 | 97.0£0.6 | 99.6+0.1 | 96.9+0.5 | 96.0+£3.9 | 96.242.5 | 95.9+5.1 | 99.6+£0.5 | 96.1£2.5

4 97.2+0.4 | 96.9+0.5 | 97.3£0.5 | 99.7+0.1 | 97.1+0.4 | 95.9+3.7 | 95.9+2.8 | 95.8+4.8 | 99.5+0.5 | 95.8+2.5

5 97.240.4 | 97.0£0.5 | 97.3£0.5 | 99.740.1 | 97.1£0.4 | 95.843.7 | 95.943.0 | 95.6+5.0 | 99.5£0.5 | 95.7+£2.5

6 97.0£0.5 | 97.1£0.4 | 97.0£0.6 | 99.7+0.1 | 97.0£0.5 | 95.5+4.5 | 96.1£2.7 | 95.3+5.9 | 99.5£0.5 | 95.7£2.9

7 96.9+0.5 | 97.240.4 | 96.840.6 | 99.7£0.1 | 97.0+£0.5 | 95.3+4.7 | 96.1£2.7 | 94.9£6.2 | 99.5£0.7 | 95.5+3.2

8 96.9+£0.5 | 97.240.4 | 96.8£0.6 | 99.7+0.1 | 97.0£0.4 | 95.3+4.5 | 96.242.7 | 95.0+6.1 | 99.5£0.5 | 95.6+£2.9

9 96.7£0.6 | 97.3£0.4 | 96.5£0.8 | 99.7£0.1 | 96.9£0.5 | 95.1+4.6 | 96.2+2.7 | 94.7+6.1 | 99.5£0.6 | 95.4+£3.1

and Leakage, were used with 8 and 10 s window lengths, where
the corresponding Ac on training folds was 97.0%. With a 5 s
window length, the Ac on evaluation was as high as 96.3%. The
Ac rate is lower when shorter windows are selected; 96.1% with
453,95.8% with 3's,95.2% with 2 s, and 92.7% with a 1 s window.
Balancing the data does not substantially change the results.

The combination of the two metrics Count2 and Leakage re-
sult in the best performance with each window length group,
except 2 and 4 s window groups, where the three metric combi-
nations of Count2, Leakage, and A3 yield the best performance.
The classification Ac rate on the training folds increase when
the numbers of selected metrics increase from 2 to 5. However,
the Ac on the evaluation folds does not increase accordingly.
The Se of VF detection increases with increasing number of
features. However, the Sp decreases accordingly.

IV. DISCUSSION

The method proposed in this paper selected only two features
on a relatively short window length. Thus, it provides real time
operation of VF detection.

A bandpass filter with bandwidth from 13 to 16.5 Hz was
used to trace the non-VF rhythm complexes when Count2 was
being extracted. The filter output for non-VF rhythms shows
obviously peaks of QRS; thus, a comparatively small number of
signal samples locate in the ranges defined for Count2. However,
the output for VF has no clearly defined peaks. It is associated
with a higher number of samples in the range of Count2. The
Leakage algorithm shifted the data by half a period and then

combined them with the original data. The quasi-sinusoidal VF
signal will, therefore, be canceled.

Fixed thresholds were used for VF classification in [6], [11],
and [13]. A series of thresholds of Countl, Count2, and Count3
and complicated logical judgment was also employed in [11].
These thresholds were selected by retrospective analysis on the
entire database without further evaluation. We use a machine
learning algorithm to avoid the fixed threshold selection prob-
lem. The results show much more robustness on out-of-sample
data. Cross validation was performed to mitigate the risk of
overtraining.

The Count2 and Leakage metrics appear to provide compli-
mentary information, since the former measures the half band-
width of the signal centered on the dominant frequency, and the
latter measures the power in the sidebands outside of the central
frequencies.

Compared to the use of a 10 s window, the Ac using a 5 s
window drops only by 0.1% even though there is a 50% short-
ening of the window size. Reducing the window size to 2 s
can still provide a high performance with Ac of 95.2%, Se of
95.1%, Sp of 95.1%, and AUC of 0.992. A shorter window
means quicker detection of such potentially lethal rhythms and
so possibly faster treatment for the patient. Under zero-noise
conditions, a shorter window should not matter too much, but
because the episode of VF may be obscured partially by noise,
Ac over shorter windows equates to a more accurate alarm under
such conditions.

The standard deviation on the evaluation folds is five to ten
times larger than that on the training folds after 50 repetitions
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TABLE VII

PERFORMANCE COMPARISONS OF THE BEST PERFORMING METHODS CITED IN THE LITERATURE
Algorithms Ac (%) Se (%) Sp (%) Window size (s) | Database used # subjects | # events
TCI, Thakor et al. [14]* N/A 98 75 8 AHA, CUDB, VFDB 65 161
ACF, Chen et al. [14]* N/A 78 32 8 AHA, CUDB, VFDB 65 161
VF-filter, Kuo and Dillman [14] ¥ N/A 94 91 8 AHA, CUDB, VFDB 65 161
Spectrum analysis, Barro et al. [14] ¥ N/A 79 93 8 AHA, CUDB, VFDB 65 161
Complexity measure, Zhang et al. [14]* N/A 66 75 8 AHA, CUDB, VFDB 65 161
Time delay, Amann et al. [18]* 96.2 79.0 97.8 8 AHA, MIT-BIH, CUDB 123 333583
SCA, Amann et al. [15] ¢ 96.2 71.2 98.5 8 AHA, MIT-BIH, CUDB 123 333583
Discriminant analysis, Jekova [1] i N/A 94.1 93.8 10 AHA, CUDB, VFDB 67 N/A
Filter & Counts, Jekova and Krasteva [11]* 94.7 94.4 95.9 10 AHA, CUDB, VFDB 67 12254
Imporved Filter & Counts, Fokkenrood, et al.[23]* | 98 97 98 6 MIT-BIH, CUDB, VFDB | 105 N/A
Method proposed in this study (training) * 98.1 98.4 98.0 5 AHA, CUDB, VFDB 67 20478
Method proposed in this study (validation) 96.3+3.4 | 96.2+2.7 | 96.2+4.6 | 5 AHA, CUDB, VFDB 67 20478
Method proposed in this study (validation) 95.2+3.3 | 95.1+2.8 | 95.1+4.5 | 2 AHA, CUDB, VFDB 67 51732

#Note: all the other methods presented here except our proposed method report statistics on in-sample unbalanced training data. Our in-sample training results exceed all other
methods. Out-of-sample results cause a drop of only 2% in performance. MIT-BIH is the MIT-BIH arrhythmia database.

of fivefold cross validation. This suggests that there are char-
acteristic diversities of VF between patients, and a systemic
validation is necessary for evaluating the performance of the
algorithm.

Table VII shows the performance comparison of some of
the cited methods. Note that the performance of our method
is reported both on the in-sample training dataset and out-of-
sample validation dataset; the others report results when using
the entire dataset.

The study is limited by the data in the standard databases.
These are often hand-picked to be of high quality, and so that the
performance in the presence of severe noise could be examined.
This is of course true of all previous studies. Furthermore, a more
exhaustive set of features (beyond the current literature) were
not explored, since it was assumed that the previous authors had
already examined most of the promising approaches. The point
of this paper was to illustrate the performance of previously
published metrics (and combinations of them) in a statistically
valid manner, with out-of-sample testing, which has not been
previously attempted in the literature.

V. CONCLUSION

The method proposed in this paper performs almost equiv-
alently on both the in-sample training and out sample valida-
tion dataset. All other methods reported in the literature have
reported in-sample statistics, and therefore, a much lower per-
formance for those techniques should be expected in reality.
Such an issue was seen when we performed univariate tests
on the metrics used by other authors. In our paper, we used
a systematic cross-validation approach to reduce the possibil-
ity of overtraining, and we have demonstrated that we are able
to produce a best-in-class VF detector across a diverse set of
databases. In particular, we are able to produce high perfor-
mances with smaller windows sizes than have previously been
attempted. Moreover, our method is rapid to implement since it
only requires two relatively simple features.
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