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3.1 Introduction

Although current healthcare practice is centered on human expert assessment of the
correlations between parameter values and symptoms, there is a growing awareness
within medical communities that the enormous quantity and variety of data available
cannot be effectively assimilated and processed without automated or semi-automated
assistance [1]. Automated systems have been in place in the intensive care unit (ICU),
the operating room (OR) and clinical ward for several decades, including automated
arrhythmia analysis of the bedside electrocardiogram (ECG) and low (or high) oxygen
saturation warnings from the photoplethysmograph (PPG). However, each device
acts in an isolated fashion with no reference to related signals or an individual’s prior
medical information, such as genetics or medical history. Since modern physiological
monitoring devices are tuned to be highly sensitive, but prone to noise, a paradigm
shift in monitoring technology is required, which allows for more intelligence in the
device and less expert oversight [2]. Artifacts, noise and missing values are the main
reasons of the high levels of false alarms [3]. Meanwhile, the explosion of mHealth
in both abundant and resource-constrained countries is both a cause for concern and
celebration [4—7]. While mHealth clearly has the potential to deliver information
and diagnostic decision support to the poorly trained, it is not appropriate to simply
translate the technologies which the trained clinician uses into the hands of nonexperts.
In particular, it is important that the explosion of access does not lead to a flooding
of the medical system with low-quality data and false negatives. Although telehealth
has the potential to connect remote users with little training to trained experts, with
the patient-to-doctor ratio being as low as 50,000:1 in parts of low-income countries,
automated algorithms will be essential to cope with the number of recordings that are
likely to be made available. Moreover, since the greatest (and often the only) chance
for improving the quality of physiological data is at source, a rapid feedback to the
recordist or user concerning the clinical viability of the data is needed. Therefore,
data screening must occur at the front end using automated algorithms, prompting
the user to retake recordings when quality is low.
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In order to provide information for medical experts (or automated decision sup-
port systems) to make choices concerning patient care, the wealth of available data
must be reduced to a set of distinct concepts and features. Although many parameters
are derived from patient data “on the fly”” and recorded for later review, trust metrics or
signal quality measures associated with these parameters are rarely stored. Therefore,
it is difficult to ascertain the credibility of a given parameter unless the original data
from which the parameter was derived are available, either to visually verify the data
or in order to derive independent quality metrics.

Noise reduction algorithms often introduce misleading distortions in medical
time-series data and, therefore, they should be applied only when the data are deter-
mined to be too noisy for a feature extraction algorithm to be applied accurately.
However, it is often necessary to extract features and compare them with a population
norm, or a patient’s history, in order to determine whether significant amounts of
noise are present. A method for simultaneously (or recursively) extracting features
and estimating noise levels is, therefore, appropriate.

Since robust methods for dealing with noisy data are not always available, it
is sometimes more appropriate to define a signal quality measure for a given data
stream, and simply ignore the segments of data that have a signal quality below a
given value. However, metrics for signal quality are both signal and application spe-
cific. Signal quality indices (SQIs) can generally be constructed by thresholding on
known physiological limits such as the maximum field strength for the ECG, the
maximum rate of change of the blood pressure or the distribution of energy in the
frequency domain. However, it is the relationship between physiological parameters
that provides the greatest opportunity to construct SQIs. For example, if heartbeats
are detected in several ECGs and/or pulsatile waveforms within an expected period
of time, all signals can be considered to be of reasonable quality. In Li ef al. [8],
we calibrated a set of ECG signal quality metrics (based on statistical, temporal,
spectral and cross-spectral features of the ECG), so that a given value of an SQI
metric was equated to known error in heart rate. A similar approach was also taken
to ABP, and hence error bounds in derived estimates that rely on heart rate and blood
pressure (such as the cardiac output) can easily be estimated from the standard com-
pound error formula. Generally, data in the ICU are processed in isolation from
other parameters and signal quality labels are therefore rarely constructed with ref-
erence to other signals. In our approach to SQI derivation, we have concentrated
on the relationships between signals, such as the transit time between the ECG and
the ABP [9] and the inter-ECG lead relationships [8]. By comparing related signals
and thresholding these relationships on known physiological limits, it is possible to
determine whether the data are logically consistent. Since it is rare that a sequence of
extracted features will randomly manifest in a physiologically plausible manner, inter-
nal consistency between signals can indicate high signal quality on the contributing
leads.

Throughout this chapter, we illustrate our approach to signal processing and
feature selection preprocessing for atrial fibrillation (AF) detection in noisy environ-
ment. AF is the most common cardiac arrhythmia, whose prevalence is 0.4—1% in
the general population and increases with age [10]. AF is associated with a fivefold
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increased risk of stroke, and one in six strokes occurs in patients with AF. This pathol-
ogy can be symptomatic, (e.g., palpitation and fatigue) but can also be asymptomatic,
which makes AF currently under-diagnosed. ECG signals acquired during ambula-
tory recordings and more specifically with mHealth applications are prone to noise
and artifacts. Such recordings are also performed in an uncontrolled environment and
by nonexperts.

The goal of this study is therefore to assess the preprocessing algorithms and the
influence of noise on the estimation of RR intervals and how these noisy estimates
of the RR time-series will impact the detection of AF episodes by state-of-the-art
automated algorithms.

3.2 Preprocessing and database

3.2.1 QRS detection
Three popular QRS detectors were used to detect the QRS complex of ECG.

1. jqgrs: [11,12] consists of a window-based peak energy detector. The original
band-pass filter has been replaced with a QRS matched filter (Mexican hat)
and an additional heuristic ensuring no detection was made during flat lines. A
search-back procedure is also allowed in case of suspected missed beats.

2. gqrs: (available on Physionet; https://www.physionet.org/physiotools/wag/gqrs-
1.htm), which consists of a QRS matched filter with a custom built set of
heuristics (such as search back). It has been designed by George Moody, and
is freely available on Physionet, but does not have an associated publication.

3. waqrs: [13] consists of a low-pass filter, a nonlinearly scaled curve length
transformation and decision rules. It is freely available on Physionet.

A majority voting of the results of the three detectors was evaluated to calculate the
beat-by-beat RR intervals.

3.2.2 Signal quality assessment

SQI of ECG was implemented based on a machine learning approach, which combines
several simple quality metrics [14,15]. Of these, bSQI is the most important one and it
consists of the comparison of two different peak detectors, jqrs and wqrs, one (wqrs)
being more sensitive to noise than the other (jqrs). bSQI therefore indicates when the
R peak detection is precise, and was used in this study. bSQI was computed on a 10-s
window and sliding the window forward every second to get the second-by-second
bSQI.

3.2.3 Datasets

Two databases were used in this study, the MIT-BIH atrial fibrillation database
(AFDB) and the long-term AF database (LTAFDB), which are open access at
www.physionet.org
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The AFDB includes 25 ECG recordings of human subjects with AF (mostly parox-
ysmal). Of these, 23 records include two ECG signals with rhythm and unaudited beat
annotations. The rest two records are represented only by the rhythm and annotation
files without ECG signals and are eliminated from this study. The individual ECG
recordings are each 10 hours in duration, and contain two ECG signals each sam-
pled at 250 samples per second with 12-bit resolution over a range of =10 millivolts.
The rhythm annotation files were prepared manually; these contain rhythm annota-
tions of types AFIB (atrial fibrillation), AFL (atrial flutter), J (AV junctional rhythm)
and N (used to indicate all other rhythms). The LTAFDB includes 84 long-term
ECG recordings of subjects with paroxysmal or sustained AF. Each record contains
two simultaneously recorded ECG signals digitized at 128 Hz with 12-bit resolution
over a 20 mV range; record durations vary but are typically 24-25 hours. The types
of rhythm annotations include AFIB (atrial fibrillation), N (normal sinus rhythm),
SVTA (supraventricular tachyarrhythmia), VT (ventricular tachycardia), B (ventric-
ular bigeminy), T (ventricular trigeminy), IVR (idioventricular rhythm), AB (atrial
bigeminy) and SBR (sinus bradycardia). In this study, we regard the AFIB annotation
as AF (1) and all other rhythm annotations as Non-AF (0).

The design of machine learning algorithm of AF detection included a develop-
ment phase and a validation phase. The AFDB was used in the development phase
and the LTAFDB was used in the validation phase. Here we recommend to validate
the robustness of the algorithm on an unseen database which is different from the
development phase.

In the development phase, the ECG in AFDB was analyzed by the three QRS
detectors and a majority voting was performed to calculate beat-by-beat RR intervals.
The first channel of ECG was analyzed except record 07162 which the voltage of QRS
complex is low in the first channel and the second channel was used. The AF and
Non-AF rhythms were marked segment-by-segment by a 30-s length analysis window.
Here we selected a 30-s window due to that the AF events usually last 30 s or even
longer to be considered from the clinical point of view [16]. Rhythms with lengths
shorter than 30 s were discarded. The bSQI was computed on a second-by-second
basis, and a unique score was derived for each window by the median of the bSQI
over the window. In order to avoid the influence of noise during the development
phase, the low quality segments with a median of bSQI lower than 0.85 were removed
from the dataset. A resultant dataset with total 26,925 high quality segments was
extracted from AFDB, including 10,541 AF segments and 16,384 Non-AF segments.
The dataset was then split randomly into training set and test set, stratified by patients
rather than by segments, as shown in Table 3.1. Stratification by patients ensures
that the training set and test set contain mutually exclusive patients and reduces the
chances of over-training. A K-fold cross validation, also stratified by patients, was
also performed to avoid overfitting during the development phase.

In the validation phase, the first channel of ECG in LTAFDB was analyzed by
three QRS detectors except records 00, 24, 56 and 62, in which the first channel was
very noisy and so the second channel was used. Note we did not eliminate the noisy
segments in the validation phase, so that the validation statistics reflect both a real-
world scenario, with previously unseen patients containing noisy data. Importantly,
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Table 3.1 Datasets using in this study

Development phase (AFDB) Validation
phase (LTAFDB)
Training set Test set Total Total
(12 cases) (11 cases) (23 cases) (84 cases)
AF Non-AF AF Non-AF AF Non-AF AF Non-AF

Segments 5,327 8,639 5,214 7,745 10,541 16,384 118,473 103,498
Total 13,966 12,959 26,925 221,971

an entirely separate database was used, ensuring differences in patient population and
recording techniques. A validation dataset with total 221,971 segments was extracted
from LTAFDB, including 118,473 AF segments and 103,498 Non-AF segments.

3.2.4 Adding realistic noise to known data

To evaluate the influence of the noise to AF detection, we added the muscle artifact
(MA) noise, simulated using the fecgsyn toolbox [17], to each of the ECG signals in
the LTAFDB in the validation phase. Simulations with different SNR levels (24, 21,
18,15,12,9, 6, 3, 0, —3 dB) were performed.

3.3 Feature extraction

Feature extraction is the process of reducing a set of raw or preprocessed data into a
smaller set of quantities (features) that represent the key qualities of the data. Features
should be chosen (or found) such that they possess highly different values for each
class of data that requires identification (or classification). Since there is an almost
infinite number of statistics and metrics that can be extracted from a given set of
data, prior knowledge of the system (e.g., physiology or noise profiles under certain
conditions) is often used to guide feature extraction. For example, AF is characterized
by a chaotic electrical conduction through the AV node and ventricular response,
resulting in an unpredictable depolarization of the ventricles, and therefore the RR
interval time-series. It is not completely unpredictable, and a probabilistic modeling
of the RR intervals during AF episodes has been recently suggested [18]. The use of
the statistics of RR intervals for the detection of AF episodes has been proven to be
possible, and several methods have been proposed [19-21]. In this study, we have
chosen to use a superset of the 14 RR interval time-series features proposed in these
earlier studies. Although this may not be exhaustive, it provides a tractable list from
which we can then perform feature selection (to remove redundant or suboptimal
features).
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3.3.1 Time-domain features

The mean value (mRR), minimum value (minRR) and maximum value (maxRR)
of RR intervals of the current RR segment, the median value of HR (medHR), the
standard deviation of RR intervals (SDNN), the percentage of RR intervals larger than
50 ms (PNNS50) and the square root of the mean squared differences of successive
RR intervals (RMSSD) were used as time-domain features [22].

3.3.2 Frequency-domain features

Burg’s autoregressive approach (with an order of 6) was used to produce the power
spectrum for the RR segment. The power spectrum was integrated over two frequency
ranges: the low-frequency power (0.04-0.15 Hz) and the high-frequency power (0.15
to 0.40 Hz). The normalized low-frequency power (LF,), normalized high-frequency
power (HF),) and the ratio of low-frequency power to high-frequency power (LF/HF)
were used as the frequency-domain features [22].

3.3.3 Nonlinear features

Coefficient of sample entropy (COSEn) and normalized fuzzy entropy (NFEn) were
used as nonlinear features [23-25], with an embedding dimension m = 1. For a
detailed discussion process for COSEn and NFEn please refer to the Appendix 1.
MAD feature [26], defined as the median of the variation in the absolute standard
deviation from mean of heart rate in three adjacent RR segments with same length,
was used as another nonlinear feature. An AF evidence feature (AFEv), as a numeric
representation of the Lorenz plot, a two-dimensional histogram, was also used [27,
28]. The MAD method requires that the length of RR segment should be perfectly
divisible by 3. Therefore, each window was truncated so that the number of RR
intervals was rounded to be as large as possible while being exactly divisible by three.

3.4 Feature selection

Feature selection is primarily performed to select relevant and informative features.
It can have other motivations, including [29]:

e general data reduction, to limit storage requirements and increase algorithm
speed;

e feature set reduction, to save resources in the next round of data collection or
during utilization;

e performance improvement, to gain in predictive accuracy;

e data understanding, to gain knowledge about the process that generated the data
or simply visualize the data.

There are three main categories of feature selection algorithms: filters, wrappers and
embedded methods. Filter methods, or called feature ranking methods, provide a
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complete order of the features using a relevance index, including correlation coef-
ficients, classical test statistics (z-test, F-test, chi-squared, etc.), mutual information
and information theory. Wrappers and embedded methods involve the predictor as
part of the selection process. Wrappers utilize a learning machine as a “black box”
to score subsets of features according to their predictive power. Embedded methods
perform feature selection in the process of training and are usually specific to given
learning machines.

In this study, we tested two feature selection methods corresponding to two
machine learning algorithms, logistic regression and support vector machine.

3.4.1 Forward likelihood ratio selection for logistic regression

Logistic regression (LR) is a statistical model for classification, which identifies the
impact of multiple independent variables in predicting the membership of one of the
multiple dependent categories. For binary logistic regression (BLR), the number of
the dependent categories was limited as two. BLR can be considered an extension
of linear regression, which struggles with dichotomous problems. This difficulty is
overcome by applying a mathematical transformation of the output of the classifier,
transforming it into a bounded value between 0 and 1 more appropriate for binary
predictions.

In the current study, the output variable Y is a positive (1) or negative (0) diagnosis
for AF: the posterior probability P (y|X) for the input feature vector X is modelled
by a logistic function, as follows:

1
PO =0 = s 3.1)
P(Y = 11X) = exp(w'X) (3.2)

1 + exp(wX)
where w is the vector of the regression coefficients.

The sigmoid function S(¢) is usually used as the standard logistic function and is
defined as:

1
St)y= —— 3.3
(0 T+ exp(—D) (3.3)

Likelihood ratio (also named as odds ratio) is defined as the natural logarithm of (3.1)
and (3.2). Thus a linear dependence between conditional probabilities and predictive
variables is established as:

P(Y =1|X) exp(w’X) /(1 + exp(w' X)) _
PY=0X) " 1/(0+exp’X)

From (3.4), if P(Y = 1|X) = P(Y = 0|X), i.e., the probabilities of predicting AF
and Non-AF equal, the output of w’.X will be 0. So we can use the training set to
train the BLR model, determining the selected feature vector X and their regression
coefficients vector w. Then we can set z = w’.X and calculate the outputs for the
RR segments of test set, predicating them as AF segments if z > 0 and as Non-AF
segments if else.

In wlX (3.4)
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The aforementioned BLR analysis was performed on SPSS version 19 to explore
the potential predictable features for AF detection. All 14 features were tested. Forward
likelihood ratio selection was used. Initially there are no features in the model. Then
the feature with the largest likelihood was selected into the model. If the statistical
difference was significant with the adding of this feature, the feature was reserved
as a predictable feature. Then the feature with the largest likelihood in the remaining
features was selected into the model and the comparison was also performed. The
selection will be ended if the newly added feature could not significantly improve the
AF prediction results. The limit with this method is that it can be too greedy: features
are fully added at each step, so correlated predictors are unlikely to be included in the
model.

3.4.2 Recursive feature elimination for support vector machine

The fundamental idea of support vector machine (SVM) classifier is the construc-
tion of the optimal hyperplane w’x + b = 0, which separates different classes with
maximal margin [29,30].

The maximal margin can be defined as maximization of the minimum distance
between vectors and the hyperplane:

m%jxmin{||x—xi||:wa—i—b:O,i:l,...,m} (3.5
The w and b can be rescaled in a way that the point closest to the hyperplane lies
on a hyperplane w/x + b = +1. Hence for every x; we get: y,[w’x; + b] > 1, so the

width of the margin is equal to 2/||w||. Equation (3.5) then can be restated as the
optimization problem of objective function:

. 1 2
min7(w) = > {|wll (3.6)
With the following constraints:

wWix,+b]1>1,i=1,....m (3.7)
Vi

To solve it, a Lagrangian is constructed:
1 m
L(w.b,a) = S [w* - ;ai(y,-[xfww] —1) (3.8)

where o; > 0 are Lagrange multipliers. Its minimization leads to:

iaiyi =0, w= Zm:ai)h'xi (3.9
i=1 i=1

According to the Karush-Kuhn-Thucker conditions [31],
alyxX'w+bl—1)=0,i=1,....,m (3.10)

The non-zero «; corresponds to y,[x/ w + b] = 1. It means that the vectors which lie
on the margin play the crucial role in the solution of the optimization problem. Such
vectors are called support vectors.
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After some substitutions the optimization problem can be transformed to the dual
optimization problem:

m 1 m
max W () = Zai -3 Z 0] X (3.11)
i=1

ij=1

with constraints:
>0 i=1....m Y ay=0 (3.12)
i=1

Using the solution of this problem the decision function can be written as:

S(x) = sgn (Z aiyix"x; + b) (3.13)
i=1
To replace the dot product x”x’ by a kernel function k(x, x'), it extends the linear SVM
to a nonlinear SVM. The new decision function is:

f(x) = sgn (Z aik(X,%;) + b) (3.14)

i=1

In this study, we used the Gaussian kernel:
/ 12
k(x,x) :exp[—y”x—x H ] (3.15)

A standardization of the features is necessary before SVM training. The following
centering and scaling of the data is used: x; = (x; — w;)/0;, where u,; and o; are the
mean and the standard deviation of feature x; over training set. Note that the same u;
and o; over the training set are used over the test set too.

A recursive feature elimination (RFE) algorithm was used for feature selection
which was proposed by Guyon et al. [32]. The RFE algorithm method attempts to find
the best subset of size o (0 < N) by a kind of greedy backward selection. It operates
by trying to choose the o features which lead to the largest margin of class separation
by a SVM classifier. This combinatorial problem is solved in a greedy fashion at each
iteration of training by removing the input dimension that decreases the margin the
least until only ¢ input dimensions remain.

For a nonlinear SVM, the margin is inversely proportional to the value W?(a) :=
> o yyik(xg, x;). The algorithm thus tries to remove features that lead to small
values of this variable. An iterative procedure was performed as below.

Repeat
Train a SVM on training set
Given the solution «, calculate W(z_ (@) for each feature p:

W(z,p)(ot) = Zakalykylk(x;p>x;p)

(where x,” means training point k& with feature p removed)
Remove the feature with smallest value of W?(at) — W2 ()
Until o feature remains.
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3.5 Evaluation metrics
The accuracy of AF predictor can be evaluated by the following indices:

Sensitivity: Se =TP/(TP + FN)

Specificity: Sp = TN/(TN + FP)

Accuracy: Acc = (TP +TN)/(TP 4+ FP + FN 4+ TN)

AUROC: the area under the receiver operating characteristic (ROC) Curve

where TP is the number of true positive, TN is the number of true negative, FP is the
number of false positive and FN is the number of false negative.

3.6 Results

3.6.1 Feature results comparison between AF and Non-AF

Table 3.2 shows the average values of all features for the AF and Non-AF RR seg-
ments (with one standard deviation). A group #-test demonstrates that are significant
differences of all features (P < 0.01) between the two groups except for the LF/HF
index.

Table 3.2 Statistical group t-test results for comparison between the AF and
Non-AF groups

Variable AF Non-AF
Number of RR segments 10,541 16,384

mRR (s) 0.68 £+ 0.14* 0.83 +£0.16
minRR (s) 0.44 £ 0.10% 0.70 £ 0.22
maxRR (s) 1.074£ 0.33%* 0.96 + 0.34
medHR (beats/min) 96 + 21* 75 £ 16
SDNN (s) 0.15 £ 0.06* 0.05 £ 0.08
PNNS50 (%) 73 £ 13* 14 + 21
RMSSD (s) 0.20 £ 0.09* 0.08 £0.12
LF, 0.38 £ 0.14* 0.29 £0.21
HF, 0.62 £ 0.14* 0.71 £0.21
LF/HF 0.70 &+ 0.46 0.70 £ 1.26
COSEn —0.93 £ 0.52* —2.10£0.87
NFEn 0.55 £+ 1.00* —3.03 £ 1.65
MAD (x107%) 212 +£9.7* 25483
AFEv 32.5+9.1* —14.8 £ 14.3

Note: Data are presented by mean =+ standard deviation (SD). “*” means significant differences
compared with Non-AF group.
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Table 3.3 Feature selection results for the training set and the corresponding
regression coefficients of binary logistic regression using forward
likelihood ratio method. The results are given for each regression step

Regression Regression coefficients for the selected variables

step
Constant PNN50 AFEv MAD NFEn COSEn mRR HFn LF/HF
—5.137 0.108 0 0 0
—5.184  0.030 0.235 0 0

—5.231 0.058 0.230 —-9,481 0
—3.659 0.046 0.202 —10,365 0.797
—6.711 0.044 0.150 —12,518 3.210 —4.495
—10.193 0.019 0.180 —10,730 3.656 —5.419 4.187 0
—-9.903 0.020 0.174 —10,617 3.764 —5.669 4.754 —1.396 0
—6.396 0.018 0.174 —10,231 3.688 —5.545 5.194 —5.632 —1.282

0NN A WN—
S oo O

[ NeNoNo Nl

S oo OO

[= RN oo Nl

3.6.2 Model development phase

3.6.2.1 Logistic regression result

Table 3.3 shows the feature selection results for the training set and the corresponding
regression coefficients of BLR using the forward likelihood ratio method. The results
are given for each regression step. After eight regression steps, eight features were
identified as the predictable features, including PNN50, AFEv, MAD, NFEn, COSEn,
mRR, HFn and LF/HF in turn. As shown in Table 3.3, the final prediction formula
for AF segment is:

z=wlX = —6.396 + 0.018 x PNN50 + 0.174 x AFEv — 10231
x MAD + 3.688 x NFEn — 5.545 x COSEn + 5.194 x mRR
—5.632 x HFn — 1.282 x LF/HF (3.16)

Table 3.4 shows the results of TP, FN, FP and TN numbers and the three indices (Se,
Sp and Acc) for both training and test sets with the evaluation for each regression
step. Using (3.16), the final AF prediction results were 99.4% for Se, 98.8% for Sp
and 99.0% for Acc for the training set, and were 97.1% for Se, 94.9% for Sp and
95.8% for Acc for the test set.

K-fold cross-validation

Table 3.5 shows the results for K-fold cross validation (K = 9). For each of the nine
subsets, the selected features and the corresponding regression coefficients of the BLR
model using the forward likelihood ratio method are given, as well as the evaluation
results for both training and test sets. Finally, the results for voting together the nine
BLR models are given, with a final Se of 98.5%, Sp of 97.9% and Acc of 98.1% for
all 26,925 RR segments.
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Table 3.5 The results for the K-fold cross-validation

Variable Subsets for K-fold cross-validation

1 2 3 4 5 6 7 8 9
Training
TP 7,583 10,089 9,290 9,210 9,555 9,617 9,056 9,184 9,399
FN 143 169 131 143 132 174 170 134 149
FP 273 314 276 318 261 325 286 283 334
N 15,401 12,894 14,835 14,894 13,388 13,301 14,981 14,884 13,824
Se (%) 98.1 98.4 98.6 98.5 98.6 98.2 98.2 98.6 98.4
Sp (%) 98.3 97.6 98.2 97.9 98.1 97.6 98.1 98.1 97.6
Acc (%) 98.2 97.9 98.3 98.1 98.3 97.9 98.1 98.3 98.0
Test
TP 2,680 272 1,009 1,175 854 750 1,237 1,214 990
FN 135 11 111 13 0 0 78 9 3
FP 12 12 24 51 155 25 8 128 24
TN 698 3,164 1,249 1,121 2,580 2,733 1,109 1,089 2,202
Se (%) 95.2 96.1 90.1 98.9 100.0 100.0 94.1 99.3 99.7
Sp (%) 98.3 99.6 98.1 95.6 94.3 99.1 99.3 89.5 98.9
Acc (%) 95.8 99.3 94 .4 97.3 95.7 99.3 96.5 94 .4 99.2
Summary of all K models
Total TP 10,181
Total FN 360
Total FP 439
Total TN 15,945
Mean Se (%) 97.0+ 34
Mean Sp (%) 97.0 £ 3.3
Mean Acc (%) 96.9 +2.0
Voting all K models
TP 10,389
FN 152
FP 358
TN 16,026
Se (%) 98.6
Sp (%) 97.8
Acc (%) 98.1

3.6.2.2 SVM result

RFE feature selection

The result of RFE feature selection for SVM algorithm is shown in Table 3.6. In the
beginning all features are in the model. The order of feature removing is LFn, HFn,
LF/HE, MAD, COSEn, mRR, medHR, NFEn, RMSSD, PNN50, maxRR, SDNN and
minRR during the iteration. AFEv is the last one keeping in the model. After the sixth
iteration, the AUROC gets the maximum on the test set. There are eight features left
in the model, AFEv, minRR, SDNN, maxRR, PNN50, RMSSD, NFEn and medHR.
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Table 3.6  Result of RFE feature selection

Iterate Removed feature Training set Test set
step each step
Se Sp Acc  AUROC Se Sp Acc  AUROC

0 - 99.51 99.24 99.34 99.85 96.36 96.75 96.59 99.30
1 LFn 99.53 99.24 99.35 99.85 96.36 96.73 96.58 99.27
2 HFn 99.47 99.25 99.33 99.86 96.43 96.69 96.59 99.22
3 LF/HF 99.49 99.25 99.34 99.85 96.16 96.79 96.54 99.20
4 MAD 99.42 99.25 99.31 99.85 96.13 97.20 96.77 99.26
5 COSEn 99.42 99.18 99.27 99.86 96.28 97.24 96.85 99.29
6 mRR 99.38 99.18 99.26 99.85 96.36 97.17 96.84 99.31
7 medHR 99.40 99.20 99.28 99.81 96.24 96.53 96.41 99.11
8 NFEn 99.38 99.11 99.21 99.77 96.38 96.42 96.40 99.04
9 RMSSD 99.34 99.10 99.19 99.74 96.14 96.40 96.30 98.99
10 PNNS50 99.32 99.05 99.16 99.72 96.99 96.41 96.64 99.16
11 maxRR 99.31 98.88 99.04 99.72 97.30 96.23 96.66 99.04
12 SDNN 99.27 98.72 98.93 99.62 97.62 9520 96.17 98.47
13 minRR 99.32 98.33 98.71 99.31 98.12 94.40 95.89 98.05
Table 3.7 Result of K-fold cross-validation
K-fold Training set (8 folds) Test set (1 fold)
iterate

Se Sp Acc AUROC Se Sp Acc AUROC
1 98.46  98.87 9874  99.79 93.57 98.87 9464  99.04
2 98.71 98.45 98.56  99.75 9470 99.28  98.90  99.45
3 98.93 99.05 99.00  99.75 8527  98.51 92.31 98.37
4 98.59  98.53 98.55 99.75 98.99  97.10  98.05 99.78
5 98.70  98.83 98.77  99.76 99.88  96.67 97.44  99.74
6 98.53 98.38  98.44  99.70 99.73 99.93 99.89 100.00
7 98.53 98.76  98.67  99.74 9338 9928  96.09  99.68
8 98.84  98.83 98.84  99.80 99.35 90.06 94.71 99.56
9 98.60 9850  98.54  99.76 99.70 9892  99.16  99.77
Mean 98.65  98.69  98.68  99.76 96.06 97.62  96.80  99.49
Std 0.16 0.23 0.18 0.03 4.90 3.03 2.53 0.50

K-fold cross validation
The result of K-fold cross validation is shown in Table 3.7. Note that we used ninefold
rather than 10 fold here is due to that the odd number is convenient for majority voting.
After we got the nine SVM models, we classified the whole dataset again using the
nine models and compared the result between the mean and the majority voting of
the nine models. The result is shown in Table 3.8. It shows that the Acc of majority
voting is slightly better than that of mean (98.66% vs 98.50%).
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Table 3.8 Comparison of mean and majority voting of nine models on the whole

dataset
Se Sp Acc
Mean of K models 98.31 £ 0.64 98.62 £ 0.25 98.50 £ 0.14
Voting of K models 98.65 98.66 98.66
1.2 T T T T T T T T T T T

0.9 - \ 4

0.7 - -

SQI

0.6 - b

05} ] _
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03} I .
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Figure 3.1 SQI of the dataset along with the various SNR of adding noise

3.6.3 Model validation phase

The models which were established in the development phase were validated on the
unseen LTAFDB dataset with various SNR of adding noise and by different QRS
detectors.

Figure 3.1 shows the mean and standard deviation of SQI of the dataset along
with the various SNR of adding noise. When the SNR ranges from 24 dB to 15 dB,
the SQI keeps at a high level (above 0.9) with a slight dropping, since these levels of
adding noise have little influence to the QRS detection. Accompanied with the drop of
SNR from 12 dB to 3 dB, the SQI drops obviously from 0.89 to 0.37. However, when
the SNR keeps dropping to 0 dB and —3 dB, the SQI keeps at a low level (below 0.4)
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Table 3.9 The result of Logistic regression models on LTAFDB dataset with and
without adding noise (mean of K models)

Adding jqrs egqrs wqrs Voting (QRS)
noise

(dB) Se Sp Acc  Se Sp Acc Se Sp Acc  Se Sp Acc
Non 98.07 93.46 9594 97.82 91.41 9483 98.08 90.80 94.68 98.21 9236 95.48
24 98.09 93.47 95.95 97.85 91.25 94.77 98.11 87.80 93.29 98.20 92.38 95.48
21 98.09 93.46 9594 97.89 91.20 94.77 98.12 87.03 92.94 98.20 92.33 95.46
18 98.09 93.41 95.93 97.95 91.17 94.79 98.13 85.53 92.25 98.20 92.28 95.43
15 98.11 93.33 95.90 97.87 91.39 94.85 98.21 82.68 90.96 98.21 92.13 95.37
12 98.04 93.10 95.75 97.76 90.31 94.29 98.35 74.72 87.32 98.11 91.86 95.19
9 98.02 92.65 95.53 97.48 88.75 93.41 98.34 53.19 77.27 98.00 90.46 94.48
6 97.65 90.96 94.55 97.61 84.59 91.54 99.19 18.14 61.40 97.59 86.91 92.61
3 97.93 81.61 90.36 98.05 70.89 8538 99.99 0.40 53.56 98.19 69.54 84.83
0 97.51 61.84 80.97 99.05 34.39 68.90 100.00 0.01 53.38 99.03 34.48 68.94
-3 98.35 31.50 67.38 99.99 0.57 53.63 100.00 0.00 53.37 99.96 0.60 53.63

Table 3.10 The result of Logistic regression models on LTAFDB dataset with and
without adding noise (voting of K models)

Adding jqrs gqrs wqrs Voting (QRS)
noise

(dB) Se Sp Acc  Se Sp Acc  Se Sp Acc  Se Sp Acc
Non 98.27 93.34 9599 98.03 91.31 94.89 98.29 90.68 94.74 98.41 92.25 95.53
24 98.28 93.34 96.00 98.06 91.16 94.84 9832 87.62 93.32 9840 92.24 9552
21 98.29 93.34 96.00 98.09 91.11 94.83 98.34 86.87 9298 98.40 9222 95.51
18 98.30 93.30 95.99 98.16 91.08 94.86 98.35 85.40 92.30 98.42 92.14 95.49
15 98.34 93.19 9596 98.07 91.49 95.00 98.42 82.53 91.00 98.43 91.96 9541
12 98.26 92.97 95.81 97.99 90.35 94.43 98.55 74.66 87.40 98.34 91.84 95.30
9 98.24 92.51 95.58 97.68 88.80 93.54 98.48 53.20 77.35 98.25 90.43 94.60
6 97.86 90.85 94.61 97.73 84.60 91.61 99.23 18.12 61.41 97.75 86.90 92.69
3 98.15 81.64 90.50 98.16 70.87 85.43 100.00 0.40 53.56 98.31 69.49 84.87
0 97.76 61.64 81.01 99.11 34.36 68.92 100.00 0.01 53.38 99.07 34.47 68.95
-3 98.55 31.21 67.35 99.99 0.57 53.63 100.00 0.00 53.37 99.97 0.59 53.63

without dropping, since both the QRS detectors which were used for bSQI cannot
report correct QRS detections at the severe noisy situation.

Three QRS detectors and the majority voting of the three were used to analyze
the LTAFDB dataset with and without adding noise. AF features were extracted from
the RR intervals and were fed to the models which were established from the model

development phase.

The result of LR models is shown in Tables 3.9 and 3.10 and Figures 3.2-3.4.
The result of SVM models is shown in Tables 3.11 and 3.12 and Figures 3.5-3.7.
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Table 3.11 The result of SVM models on LTAFDB dataset with and without adding
noise (mean of K models)

Adding jqrs eqrs wqrs Voting (QRS)
noise

(dB) Se Sp Acc  Se Sp Acc  Se Sp Acc  Se Sp Acc
Non 96.29 95.43 95.89 96.45 93.27 94.79 96.67 93.23 94.85 96.76 94.79 95.84
24 96.29 9543 9589 96.51 93.11 94.75 96.65 91.58 94.08 96.79 94.97 95.94
21 96.28 95.41 95.88 96.51 93.05 94.73 96.67 90.72 93.69 96.77 94.84 95.87
18 96.27 95.36 95.85 96.56 92.99 94.73 96.66 89.18 92.96 96.75 94.81 95.85
15 96.21 95.38 95.82 96.39 92.71 94.52 96.67 86.66 91.79 96.70 94.80 95.82
12 95.99 9527 95.65 96.13 91.68 93.87 96.66 79.01 88.10 96.39 94.41 95.46
9 95.57 95.08 95.34 9536 90.04 92.71 9595 59.44 78.25 95.56 92.92 94.33
6 94.79 94.13 9449 9533 87.16 91.44 97.08 2593 62.09 94.54 91.37 93.06
3 9437 87.17 91.03 95.78 73.72 85.41 99.79 6.83 52.93 94.43 76.43 86.04
0 92.22 72.04 82.86 97.32 37.06 69.12 99.79 9.14 52.48 95.48 41.73 70.42
-3 91.11 46.00 70.21 99.86 0.91 53.64 99.59 11.23 5246 9895 234 53.90
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Table 3.12  The result of SVM models on LTAFDB dataset with and without adding

noise (voting of K models)

Adding
noise
(dB)

jqrs

gqrs

wqrs

Voting (QRS)

Sp

Se

Sp

Acc

Se

Sp

Acc

Se

Sp

Acc

96.69
96.68
96.68
96.66
96.61
96.42
96.08
95.27
94.93
93.08
92.21

95.36
95.32
95.31
95.24
95.26
95.16
94.98
94.07
87.00
71.71
45.41

96.07
96.05
96.04
96.00
95.99
95.84
95.57
94.71
91.25
83.17
70.53

96.45
96.51
96.51
96.56
96.39
96.13
95.36
95.33
95.78
97.32
99.86

93.20
93.02
92.95
92.89
92.63
91.56
89.96
87.07
73.69
37.01
0.78

94.93
94.88
94.85
94.85
94.63
93.99
92.84
91.48
85.48
69.20
53.66

96.67
96.65
96.67
96.66
96.67
96.66
95.95
97.08
99.79
99.79
99.59

93.14
91.52
90.53
88.82
86.17
78.31
57.75
22.55

1.03

0.22

0.35

95.02
94.25
93.81
93.00
91.77
88.10
78.12
62.33
53.74
53.36
53.32

97.13
97.16
97.15
97.12
97.07
96.77
96.00
94.83
94.74
95.89
99.17

94.71
94.88
94.75
94.71
94.70
94.34
92.83
91.37
76.23
41.30

1.92
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96.09
96.02
96.00
95.96
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94.52
93.22
86.11
70.44
53.83
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Figure 3.5 Accuracy of SVM models on LTAFDB dataset with adding noise
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3.7 Discussion

Note that each of the K-folds gives similar results and therefore it is hard to select
which K-fold is likely to give better results on the test set. (Although we report the
performance on each test set, this information should not be used to select a model,
because it now becomes an intermediate validation set, and more held out data are
required to evaluate the actual out-of-sample performance). There are several ways
to deal with this, but essentially they boil down to a voting (and bagging) approach
and using the out-of-bag error for estimating performance.

Unfortunately, in the absence of a new test sample, many researchers simply reap-
ply the learning algorithm to the whole training set once the optimal cross-validated
parameters have been found. However, overfitting is still possible since the data have
already been used for model optimization. Alternatively, embedded methods, which
allow feature ranking through a measure of variable importance, can be used. A typ-
ical example of this is Random Forests (RF), which is a form of bagging (although
we have not explored RFs in this work).

In the examples we have presented here, we have taken the simplest approach
and voted together each model developed on each fold together and cited results on
the test set. In this case we find that we observe a modest rise in accuracy on the
held out data from 96.9% to 98.1%. For more complex or nonlinear classifiers we
may see larger improvements. However, there are also better ways to aggregate or
vote together different classifiers, learning the physiological context in which each
algorithm performs the best [33-35].

Finally we note that the use or real QRS detectors will result in errors in beat
identification, even in low noise conditions. In reality, the noise can be extremely high
from ambulatory activity, and so rejection of noisy segments needs to be considered
very carefully. We refer the reader to Oster and Clifford [36] for more details on this
subject. In this work, three popular QRS complex detection methods were evaluated
on ECG signals with different SNRs. “jqrs” method [11,12] consists of a window-
based peak energy detector and essentially also a Pan and Tompkins (P&T)-like QRS
detector [37]. Compared with the P&T method, it used a smaller window size (27 ms
vs. 100 ms) thus inducing a better performance for rejecting the false detection due
to the high amplitude T waves. In the “jqrs” method, the original band-pass filter was
replaced with Mexican hat filter and an additional heuristic ensuring no detection was
attempted during very low amplitude unvarying ECG (flat lines). A search-back pro-
cedure is also allowed in case of suspected missed beats. This combination provided
the best performance among the three selected QRS complex detection methods. The
“gqrs” method consists of a QRS matched filter with a custom built set of heuristics
(such as search back). Unfortunately this method does not have an associated pub-
lication. So it is hard to comprehensively explain the implementation. The “wqrs”
method [13] involves low-pass filtering of the ECG followed by a nonlinearly scaled
curve length transformation and a series of decision rules. This method had the lowest
performance of the three detectors on LTAFDB dataset, especially when the ECG sig-
nals were contaminated by realistic noise. From Figures 3.2—3.7, it can be easily seen
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that with the increase of SNR values, accuracy and specificity values of the “wqrs”
method dropped rapidly. Although its sensitivity did not drop greatly, the standard
deviations became much larger than “jqrs” and “gqrs” methods. We also note that
one may expect that the majority voting method would be expected to report better
results than any of the independent QRS complex detection methods. From Tables
3.9-3.12, we can see that the voting method usually reported worse performances
than “jqrs” method but better performance than other two independent methods. This
may be because “wqrs” and “gqrs” respond to artifacts in a similar manner and are
not truly independent. In fact, we have shown in earlier works that voting meth-
ods only provides substantial improvements over the best algorithm if each detection
(or vote) is weighted based on the relative performance of the algorithm, particu-
larly in the context of physiology and noise. For more details we refer the reader to
Zhu et al. [33].
In conclusion we emphasize the following points:

1. Most literature reports over-trained data, and uses small numbers of patients
drawn from a single database. Testing on completely unseen databases is required
to provide some level of trust in the signal.

2. Most databases are handpicked to be clean. Testing on such data misrepresents
the performance of an algorithm in the real world. Realistic noise should be
titrated into the data and the performance of a classifier be tested as a function
of such noise. (White and stationary noise is an unacceptable test.)

3. Signal quality metrics are important for identifying noisy periods of data and
rejecting them from classification, or for allowing a classifier to learn the class
output in the context of such noise. They also provide objective ways to assess
the confidence intervals on the classifier’s output.

4. Many databases contain expert annotations. Training and testing on these leads
to an overly optimistic result. When automated algorithms are used to iden-
tify the features to present to a classifier, significant drops in performance are
observed.

5. Voting together classifiers or detectors improves the output, but generally only if
you have large numbers of them, and/or can weight them using context (such as
physiology and/or signal quality).

Appendix 1

Coefficient of sample entropy (COSEn)

COSEn was defined by Lake et al. [2,3] as an entropy measure derived from SampEn,
designed specifically to detect AF in very short RR time series [2,3]. To avoid the
less confident entropy estimates because of falling numbers of matches of length m
and matches of length m + 1 due to the relatively small fixed r values, a measure
called quadratic sample entropy (QSE), based on densities rather than probability
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estimates, was introduced in Reference 7. It normalized SampEn by the volume of
each matching region, i.e., (2r)™:

(Am+1(},)/(2r)m+1 ) (Am+1(l")
—Inf —————— ) =-In

)/ oy ) e
SampEn + In(2r) (A1)

QSE =

In addition, regression analyses showed that heart rate was an important inde-
pendent predictor of AF [3]. Hence, the COSEn measure uses the concept of density
estimates of QSE but subtracts the natural logarithm of the mean RR interval from
QSE as:

COSEn = SampEn + In(2r) — In(mean(RR)) (A2)

where both » and mean(RR) use the unit of s.

Normalized fuzzy entropy (NFEn)

First, we generated quadratic fuzzy local measure entropy (QFLMEn) and quadratic
fuzzy global measure entropy (QFGMEn) based on the density estimates rather than
probability estimates by normalizing the FLMEn and FGMEn using the volume of
each matching region, i.e., (2r)":

QFLMEn = —ln<
BL"(ng,ry)/2r)" BL"(ng,rp)

FLMEn + In(2r)
A m+1 2 m+1 A m+1
—ln< G""(ng,rg)/(2r) ) _ —ln( G (”Ga”G)) +In2r)
BG™(ng,rs)/2r)" BG™(ng,rg)
FGMEn + In(2r) (A3)

ALm“(nL,rL)/(Zr)’”“) _ (w) +1n(2r)

QFGMEn

We also used the conclusion of “regression analyses showed that heart rate was
an important independent predictor of AF” in Reference 3, and subtracted the natural
logarithm of the mean RR interval from QFLMEn and QFGMEn as:

QFLMEn = FLMEn + In(2r) — In(mean(RR))
QFGMEn = FGMEn + In(2r) — In(mean(RR)) (A4)

And finally, NFEn is calculated as:

NFEn = QFLMEn + QFGMEn
= FLMEn 4 FGMEn + 2 x In(2r) — 2 x In(mean(RR))
= FuzzyMEn + 2 x In(2r) — 2 x In(mean(RR)) (AS)
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Signal processing and feature selection
preprocessing for classification in noisy
healthcare data
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