/* file: sqrs.c G. Moody 27 October 1990 Last revised: 22 March 2018 ------------------------------------------------------------------------------- sqrs: Single-channel QRS detector Copyright (C) 1990-2010 George B. Moody This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . You may contact the author by e-mail (wfdb@physionet.org) or postal mail (MIT Room E25-505A, Cambridge, MA 02139 USA). For updates to this software, please visit PhysioNet (http://www.physionet.org/). _______________________________________________________________________________ The detector algorithm is based on example 10 in the WFDB Programmer's Guide, which in turn is based on a Pascal program written by W.A.H. Engelse and C. Zeelenberg, "A single scan algorithm for QRS-detection and feature extraction", Computers in Cardiology 6:37-42 (1979). `sqrs' does not include the feature extraction capability of the Pascal program. The output of `sqrs' is an annotation file (with annotator name `qrs') in which all detected beats are labelled normal; the annotation file may also contain `artifact' annotations at locations which `sqrs' believes are noise-corrupted. `sqrs' can process records containing any number of signals, but it uses only one signal for QRS detection (signal 0 by default; this can be changed using the `-s' option, see below). 'sqrs' has been optimized for adult human ECGs. For other ECGs, it may be necessary to experiment with the input sampling frequency and the time constants indicated below. This program is provided as an example only, and is not intended for any clinical application. At the time the algorithm was originally published, its performance was typical of state-of-the-art QRS detectors. Recent designs, particularly those that can analyze two or more input signals, may exhibit significantly better performance. Usage: sqrs -r RECORD [ OPTIONS ] where RECORD is the record name, and OPTIONS may include: -f TIME to specify the starting TIME (default: the beginning of the record) -m THRESHOLD to specify the detection THRESHOLD (default: 500); use higher values to reduce false detections, or lower values to reduce the number of missed beats -s SIGNAL to specify the SIGNAL to be used for QRS detection (default: 0) -t TIME to specify the ending TIME (default: the end of the record) For example, to mark QRS complexes in record 100 beginning 5 minutes from the start, ending 10 minutes and 35 seconds from the start, and using signal 1, use the command: sqrs -r 100 -f 5:0 -t 10:35 -s 1 The output may be read using (for example): rdann -a qrs -r 100 To evaluate the performance of this program, run it on the entire record, by: sqrs -r 100 and then compare its output with the reference annotations by: bxb -r 100 -a atr qrs */ #include #include #include #define abs(A) ((A) >= 0 ? (A) : -(A)) char *pname; main(argc, argv) int argc; char *argv[]; { char *p, *record = NULL, *prog_name(); int filter, i, minutes = 0, nsig, time = 0, slopecrit, sign, maxslope = 0, nslope = 0, qtime, maxtime, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ms160, ms200, s2, scmax, scmin = 500, signal = -1, *v; long from = 0L, next_minute, now, spm, to = 0L; WFDB_Anninfo a; WFDB_Annotation annot; static int gvmode = WFDB_LOWRES; static WFDB_Siginfo *s; void help(); pname = prog_name(argv[0]); for (i = 1; i < argc; i++) { if (*argv[i] == '-') switch (*(argv[i]+1)) { case 'f': /* starting time */ if (++i >= argc) { (void)fprintf(stderr, "%s: time must follow -f\n", pname); exit(1); } from = i; break; case 'h': /* help requested */ help(); exit(0); break; case 'H': /* operate in WFDB_HIGHRES mode */ gvmode = WFDB_HIGHRES; break; case 'm': /* threshold */ if (++i >= argc) { (void)fprintf(stderr, "%s: threshold must follow -m\n", pname); exit(1); } scmin = atoi(argv[i]); break; case 'r': /* record name */ if (++i >= argc) { (void)fprintf(stderr, "%s: input record name must follow -r\n", pname); exit(1); } record = argv[i]; break; case 's': /* signal */ if (++i >= argc) { (void)fprintf(stderr, "%s: signal number or name must follow -s\n", pname); exit(1); } signal = i; break; case 't': /* end time */ if (++i >= argc) { (void)fprintf(stderr, "%s: time must follow -t\n",pname); exit(1); } to = i; break; default: (void)fprintf(stderr, "%s: unrecognized option %s\n", pname, argv[i]); exit(1); } else { (void)fprintf(stderr, "%s: unrecognized argument %s\n", pname, argv[i]); exit(1); } } if (record == NULL) { help(); exit(1); } if (gvmode == 0 && (p = getenv("WFDBGVMODE"))) gvmode = atoi(p); setgvmode(gvmode|WFDB_GVPAD); if ((nsig = isigopen(record, NULL, 0)) < 1) exit(2); if ((s = malloc(nsig * sizeof(WFDB_Siginfo))) == NULL || (v = malloc(nsig * sizeof(WFDB_Sample))) == NULL) { (void)fprintf(stderr, "%s: insufficient memory\n", pname); exit(2); } if ((nsig = isigopen(record, s, nsig)) < 1) exit(2); if (sampfreq((char *)NULL) < 50.) { (void)fprintf(stderr, "%s: sampling frequency (%g Hz) is too low%s", pname, sampfreq((char *)NULL), gvmode & WFDB_HIGHRES ? "\n" : ", try -H option\n"); exit(3); } if (sampfreq((char *)NULL) < 240. || sampfreq((char *)NULL) > 260.) setifreq(250.); else if (gvmode & WFDB_HIGHRES) setafreq(sampfreq(NULL)); a.name = "qrs"; a.stat = WFDB_WRITE; if (annopen(record, &a, 1) < 0) exit(2); if (from > 0L) { if ((from = strtim(argv[from])) < 0L) from = -from; if (isigsettime(from) < 0) exit(2); } if (to > 0L) { if ((to = strtim(argv[to])) < 0L) to = -to; } spm = strtim("1:0"); next_minute = from + spm; if (signal >= 0) signal = findsig(argv[signal]); if (signal < 0 || signal >= nsig) signal = 0; scmin = muvadu((unsigned)signal, scmin); if (scmin < 1) scmin = muvadu((unsigned)signal, 500); slopecrit = scmax = 10 * scmin; now = from; /* These time constants may need adjustment for pediatric or small mammal ECGs. */ ms160 = strtim("0.16"); ms200 = strtim("0.2"); s2 = strtim("2"); annot.subtyp = annot.chan = annot.num = 0; annot.aux = NULL; (void)getvec(v); t9 = t8 = t7 = t6 = t5 = t4 = t3 = t2 = t1 = v[signal]; do { filter = (t0 = v[signal]) + 4*t1 + 6*t2 + 4*t3 + t4 - t5 - 4*t6 - 6*t7 - 4*t8 - t9; if (time % s2 == 0) { if (nslope == 0) { slopecrit -= slopecrit >> 4; if (slopecrit < scmin) slopecrit = scmin; } else if (nslope >= 5) { slopecrit += slopecrit >> 4; if (slopecrit > scmax) slopecrit = scmax; } } if (nslope == 0 && abs(filter) > slopecrit) { nslope = 1; maxtime = ms160; sign = (filter > 0) ? 1 : -1; qtime = time; } if (nslope != 0) { if (filter * sign < -slopecrit) { sign = -sign; maxtime = (++nslope > 4) ? ms200 : ms160; } else if (filter * sign > slopecrit && abs(filter) > maxslope) maxslope = abs(filter); if (maxtime-- < 0) { if (2 <= nslope && nslope <= 4) { slopecrit += ((maxslope>>2) - slopecrit) >> 3; if (slopecrit < scmin) slopecrit = scmin; else if (slopecrit > scmax) slopecrit = scmax; annot.time = now - (time - qtime) - 4; annot.anntyp = NORMAL; (void)putann(0, &annot); time = 0; } else if (nslope >= 5) { annot.time = now - (time - qtime) - 4; annot.anntyp = ARFCT; (void)putann(0, &annot); } nslope = 0; } } t9 = t8; t8 = t7; t7 = t6; t6 = t5; t5 = t4; t4 = t3; t3 = t2; t2 = t1; t1 = t0; time++; now++; if (now >= next_minute) { next_minute += spm; (void)fprintf(stderr, "."); (void)fflush(stderr); if (++minutes >= 60) { (void)fprintf(stderr, " %s\n", timstr(now)); minutes = 0; } } } while (getvec(v) > 0 && (to == 0L || now <= to)); if (minutes) (void)fprintf(stderr, " %s\n", timstr(now)); wfdbquit(); exit(0); /*NOTREACHED*/ } char *prog_name(s) char *s; { char *p = s + strlen(s); #ifdef MSDOS while (p >= s && *p != '\\' && *p != ':') { if (*p == '.') *p = '\0'; /* strip off extension */ if ('A' <= *p && *p <= 'Z') *p += 'a' - 'A'; /* convert to lower case */ p--; } #else while (p >= s && *p != '/') p--; #endif return (p+1); } static char *help_strings[] = { "usage: %s -r RECORD [OPTIONS ...]\n", "where RECORD is the name of the record to be analyzed, and OPTIONS may", "include any of:", " -f TIME begin at specified time", " -h print this usage summary", " -H read multifrequency signals in high resolution mode", " -m THRESH set detector threshold to THRESH (default: 500)", " -s SIGNAL analyze specified signal (default: 0)", " -t TIME stop at specified time", "If too many beats are missed, decrease THRESH; if there are too many extra", "detections, increase THRESH.", NULL }; void help() { int i; (void)fprintf(stderr, help_strings[0], pname); for (i = 1; help_strings[i] != NULL; i++) (void)fprintf(stderr, "%s\n", help_strings[i]); }